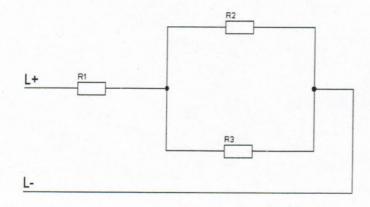

r angewandte Wissenschaften Hamburg	Fach Elektrotechnik	Fachbereich Medientechnik
Protokoll-/Berichtsführer:	Weitere Teilnehme	er:

1.2 Kirchhoffsche Gesetze und einfache Netzwerke

- 1) Prüfen Sie für die folgende Schaltung das erste Kirchhoffsche Gesetz.
 - a) Ermitteln Sie den Gesamtwidersand messtechnisch direkt und indirekt.
 - b) Bestimmen Sie die Leistungsaufnahme der einzelnen Bauteile und der gesamten Schaltung.
 - c) Welche Auswirkungen hat ein unterbrochener Glühfaden der Lampe?
 - d) Was bewirkt eine zusätzliche parallel geschaltete Glühlampe (230V/60W)?

U = 30 V, 90 V, 120 V

 $R_1 = 330 \Omega$

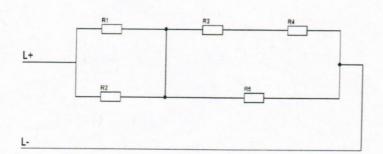

 $R_2 = 1000 \Omega$

R₃ = Glühlampe 230V/60W

- 2) Prüfen Sie unter Verwendung der Bauteile und Quellenspannungen aus Aufgabe 4) das zweite Kirchhoffsche Gesetz.
 - a) Ermitteln Sie den Gesamtwidersand messtechnisch direkt und indirekt.
 - b) Welche Auswirkungen haben eine defekte Glühlampe ⇒ bei Unterbrechung? ⇒ beim Kurzschluss?
 - c) Was bewirkt eine zusätzliche in Reihe geschaltete Glühlampe (230V/60W)?
 - d) Bestimmen Sie die Leistungsaufnahme der einzelnen Bauteile und der gesamten Schaltung.

Diskutieren Sie die Ergebnisse der Aufgaben 1 und 2 und benutzen sie dazu u.a. ein Zeigerdiagramm.

- 3) Erstellen Sie für die unten angegebenen 3 Netzwerke Messschaltungen mit denen Sie alle erforderlichen Ströme und Spannungen ermitteln können. Benutzen Sie beim Aufbau der Messschaltungen für den Widerstand R₃ jeweils eine Widerstandsdekade.
- 4) Bestimmen Sie danach den Gesamtwiderstand der Netzwerke bei Raumtemperatur.
- 5) Messen Sie die an den Netzwerken auftretenden Spannungen und Ströme, wenn die unter 6.1, 6.3 und 6.5 angegebenen Parameter eingestellt sind. Diskutieren Sie die Mess- und Rechenergebnisse.
- 6) Berechnen Sie den Widerstand R₃ in jedem Netzwerk, ausgehend von den jeweils unter 6.2, 6.4 und 6.6 angegebenen Kennwerten, und überprüfen Sie die Ergebnisse messtechnisch.



Aufgabe	6.1	6.2
U/V	120	120
R1/Ω	330	330
R2/Ω	680	680
R3/Ω	500	I1 = 230mA

Hochschule f	ür angewandte Wissenschaften Hamburg	Fach Elektrotechnik	Fachbereich Medientechnik
Datum:	Protokoll-/Berichtsführer:	Weitere Teilnehm	ner:

Aufgabe	6.3	6.4
U/V	120	120
R1/Ω	680	680
R2/Ω	1000	1000
R3/Ω	400	12 = 70 mA
R4/Ω	680	680

Aufgabe	6.5	6.6
U/V	120	120
R1/Ω	1000	1000
R2/Ω	680	680
R3/Ω	600	U4 = 40V
R4/Ω	680	680
R5/Ω	1000	1000