

L/ABORBERICHT

Fach: Elektrotechnik

Datum: 10.11.2008

Übung: 1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Protokollführer: Dennis Wedemann

Laborpartner: Malte Spiegelberg

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Inhaltsverzeichnis:

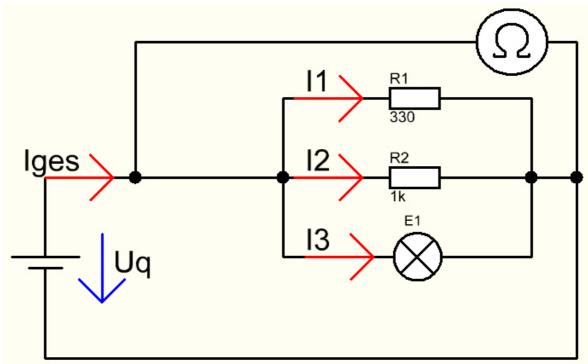
- 1. Materialliste
- 2. Aufgabe 1
 - a. Ermittlung des Gesamtwiderstandes
 - b. Ermittlung des Leistungsaufnahme
 - c. Auswirkung eines unterbrochenen Glühfadens
 - d. Auswirkung einer zusätzlichen Glühlampe
- 3. Aufgabe 2
 - a. Ermittlung des Gesamtwiderstandes
 - b. Auswirkung eines unterbrochenen Glühfadens
 - c. Auswirkung einer zusätzlichen Glühlampe
 - d. Ermittlung des Leistungsaufnahme
- 4. Aufgabe 3
- 5. Aufgabe 4
- 6. Aufgabe 5
 - 6.1 Messungen und Berechnung im Netzwerk 6.1
 - 6.2 Messungen und Berechnung im Netzwerk 6.3
 - 6.3 Messungen und Berechnung im Netzwerk 6.5
- 7. Aufgabe 6
 - 7.1.1 Berechnung von R₃ im Netzwerk 6.2
 - 7.1.2 Überprüfung der Rechnung durch Messen
 - 7.2.1 Berechnung von R₃ im Netzwerk 6.4
 - 7.2.2 Überprüfung der Rechnung durch Messen
 - 7.3.1 Berechnung von R₃ im Netzwerk 6.6
 - 7.3.2 Messtechnisches ermitteln von R₃

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

1. Materialliste

Voltmeter: ABB M 2032 (Nr. 01)

Amperemeter: Unigor 1n (Nr. 19)


Widerstände: Dekade 0 – 10000 Ω , 330 Ω , zwei Mal 680 Ω , zwei Mal 1 k Ω

Verbraucher: zwei Glühlampen 230 V / 60 W

2. Aufgabe 1

a) Ermittlung des Gesamtwiderstandes über direktes und indirektes Messverfahren

Versuchsaufbau indirektes Messverfahren:

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Versuchsaufbau direktes Messverfahren:

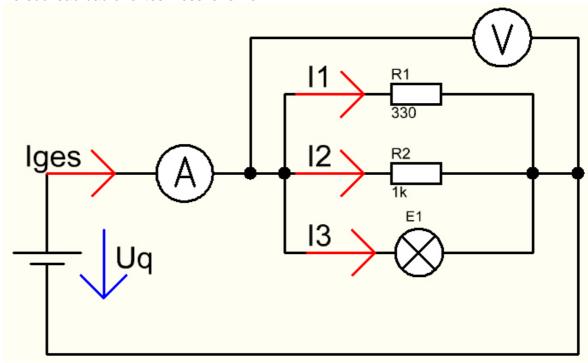


Tabelle mit Messwerten:

Berechnungsformel für R_g indirekt: $R_g = \frac{U}{I}$

U _q in V	R_g in Ω (direkt)	U _g in V	I _g in A	R_g in Ω (indirekt)
30	50,6	30	0,22	136,4
90	íí	89,9	0,52	172,9
120	íí	120	0,67	179,1

Messbereichsumschaltung: bei 30V – 0,3A bei 90V, 120V – 1,2A

Da die Ergebnisse der direkten und der indirekten Widerstands-Bestimmung erheblich voneinander abweichen, muss bei der direkten Widerstands-Bestimmung ein Messfehler gemacht worden sein. Da die direkte Widerstandsmessung ohne Spannung gemacht wurde könnte der Widerstand der Lampe sich dadurch verändert haben und das Messergebnis verfälschen. Die Berechnung erfolgt daher mit dem indirekt ermittelten Widerstand.

b) Ermittlung der Leistungsaufnahme der Bauteile

Leistungsaufnahme bei 30V Quellenspannung:

$$I_{R1} = \frac{U_{R1}}{R_1} = \frac{30V}{330\Omega} = 0.09 \text{ A}$$

$$P_{R1} = U_{R1} \cdot I_{R1} = 30 \text{V} \cdot 0.09 \text{ A} = 2.72 \text{ W}$$

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{30V}{1000\Omega} = 0.03 \text{ A}$$

$$P_{R2} = U_{R2} \cdot I_{R2} = 30 \text{V} \cdot 0.03 \text{ A} = 0.9 \text{ W}$$

$$\frac{1}{R_{E1}} = \frac{1}{R_g} - \frac{1}{R_1} - \frac{1}{R_2} \Rightarrow R_{E1} = 303 \Omega$$

$$I_{E1} = \frac{U_{E1}}{R_{E1}} = \frac{30V}{303\Omega} = 0.1A$$

$$P_{F1} = U_{F1} \cdot I_{F1} = 30V \cdot 0.1A = 3W$$

$$I_{ges} = I_{R1} + I_{R2} + I_{E1} = 0.09 A + 0.03 A + 0.1 A = 0.22 A$$

$$P_{ges} = U \cdot I_{ges} = 30 \text{ V} \cdot 0.22 \text{ A} = 6.6 \text{ W}$$

Leistungsaufnahme bei 90V Quellenspannung:

$$I_{R1} = \frac{U_{R1}}{R_1} = \frac{90V}{330\Omega} = 0.27 \text{ A}$$

$$P_{R1} = U_{R1} \cdot I_{R1} = 90V \cdot 0,27 A = 24,5 W$$

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{90V}{1000\Omega} = 0.09 \text{ A}$$

$$P_{R2} = U_{R2} \cdot I_{R2} = 90V \cdot 0.09 A = 8.1 W$$

$$\frac{1}{R_{E1}} = \frac{1}{R_g} - \frac{1}{R_1} - \frac{1}{R_2} \Rightarrow R_{E1} = 570 \Omega$$

$$I_{E1} = \frac{U_{E1}}{R_{E1}} = \frac{90V}{570\Omega} = 0.16A$$

$$P_{E1} = U_{E1} \cdot I_{E1} = 90 \text{V} \cdot 0,16 \text{A} = 14,4 \text{ W}$$

$$I_{ges} = I_{R1} + I_{R2} + I_{E1} = 0.27 \text{ A} + 0.09 \text{ A} + 0.16 \text{ A} = 0.52 \text{ A}$$

$$P_{ges} = U \cdot I_{ges} = 90 \text{ V} \cdot 0,52 \text{ A} = 46,8 \text{ W}$$

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Leistungsaufnahme bei 120V Quellenspannung:

$$I_{R1} = \frac{U_{R1}}{R_1} = \frac{120V}{330\Omega} = 0.36 \text{ A}$$

$$P_{R1} = U_{R1} \cdot I_{R1} = 120 \text{V} \cdot 0.36 \text{ A} = 43.2 \text{ W}$$

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{120V}{1000\Omega} = 0.12 \text{ A}$$

$$P_{R2} = U_{R2} \cdot I_{R2} = 120 \text{V} \cdot 0.12 \text{ A} = 14.4 \text{ W}$$

$$\frac{1}{R_{E1}} = \frac{1}{R_{\odot}} - \frac{1}{R_{1}} - \frac{1}{R_{2}} \Rightarrow R_{E1} = 644 \Omega$$

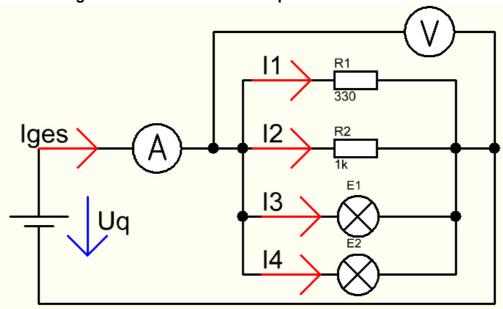
$$I_{E1} = \frac{U_{E1}}{R_{E1}} = \frac{120V}{644\Omega} = 0,19A$$

$$P_{F1} = U_{F1} \cdot I_{F1} = 120 \text{V} \cdot 0.19 \text{A} = 22.8 \text{ W}$$

$$I_{\text{des}} = I_{\text{R1}} + I_{\text{R2}} + I_{\text{F1}} = 0.36 \text{ A} + 0.12 \text{ A} + 0.19 \text{ A} = 0.67 \text{ A}$$

$$P_{ges} = U \cdot I_{ges} = 120 \text{ V} \cdot 0,67 \text{ A} = 80,4 \text{ W}$$

c) Auswirkung eines unterbrochenen Glühfadens


U _q in V	I _g in A	R_g in Ω
30	0,12	250
90	0,36	250
120	0,47	255

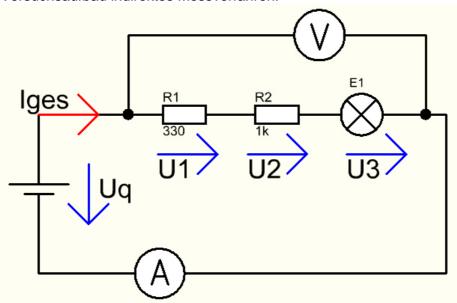
Messbereichsumschaltung: bei 30V – 0,3A bei 90V, 120V – 1,2A

Da bei unterbrochenem Glühfaden der Lampe kein Strom mehr durch diese fließt, besteht die Schaltung nur noch aus Ohmschen Widerständen. Der Gesamtwiderstand bleibt nun unabhängig von an der angelegten Spannung konstant. Die Abweichung bei 120V Quellspannung sind auf Messungenauigkeiten zurück zu führen.

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

d) Auswirkung einer zusätzlichen Glühlampe

U _q in V	I _g in A	R_g in Ω
30	0,32	94
90	0,69	130
120	0,85	141


Messbereichsumschaltung: bei 30V, 90V, 120V - 1,2A

Durch die zusätzliche parallel geschaltete Glühlampe verringert sich der Gesamtwiderstand, der Gesamtstrom hingegen wird größer.

3. Aufgabe 2

a) Ermittlung des Gesamtwiderstandes über direktes und indirektes Messverfahren

Versuchsaufbau indirektes Messverfahren:

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Versuchsaufbau direktes Messverfahren:

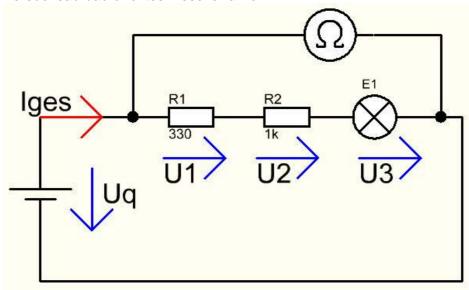


Tabelle mit Messwerten:

Berechnungsformel für R_g indirekt: $R_g = \frac{U}{I}$

U _q in V	R_g in Ω (direkt)	U _g in V	l _g in mA	R_g in Ω (indirekt)
30	1420	30	21,5	1395
90	"	90	60	1500
120	"	120	80	1500

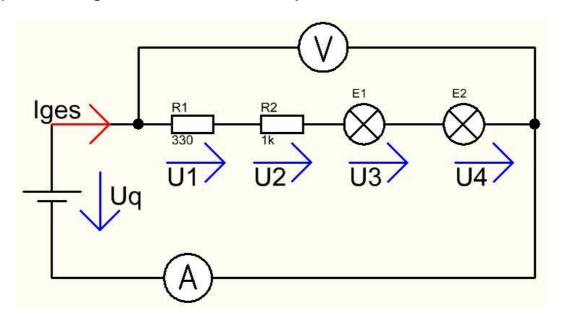
Messbereichsumschaltung: bei 30V – 60mA bei 90V, 120V – 0,3A

b) Auswirkung eines unterbrochenen Glühfadens

Bei Unterbrechung des Glühfadens kann in der gesamten Schaltung kein Strom fließen, da es keinen geschlossenen Stromkreis gibt. Der Strom ist somit überall 0, der Gesamtwiderstand hingegen ist ∞.

Bei Kursschluss ergeben sich folgende Werte:

U _q in V	l _g in A	R_g in Ω
30	0,022	1333
90	0,065	1385
120	0,090	1333


Messbereichsumschaltung: bei 30V – 60mA

bei 90V, 120V - 0,3A

Durch den Kurschluss in der Lampe kann der Strom ungehindert fließen und der Widerstand der Lampe wird verschwindend gering. Dadurch gibt es eine Schaltung mit ausschließlich Ohmschen Widerständen und der Gesamtwiderstand ist konstant und ergibt sich aus der Addition der beiden Widerstände R_1 und R_2 . Die Abweichungen sind auf messtechnische Ungenauigkeiten zurückzuführen.

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

c) Auswirkung einer zusätzlichen Glühlampe

U _q in V	I _g in A	R_g in Ω
30	0,020	1500
90	0,055	1636
120	0,065	1846

Messbereichsumschaltung: bei 30V – 60mA bei 90V, 120V – 0,3A

Durch die zusätzliche parallel geschaltete Glühlampe erhöht sich der Gesamtwiderstand, der Gesamtstrom hingegen wird kleiner.

d) Ermittlung der Leistungsaufnahme der Bauteile

Leistungsaufnahme bei 30V Quellspannung:

$$R_{E1} = R_{a} - R_{1} - R_{2} = 1395 \Omega - 330 \Omega - 1000 \Omega = 65 \Omega$$

$$U_{R1} = R_1 \cdot I = 330 \ \Omega \cdot 21,5 \ mA = 7,1 \ V$$

$$U_{R2} = R_2 \cdot I = 1000 \Omega \cdot 21,5 \text{ mA} = 21,5 \text{ V}$$

$$U_{E1} = R_{E1} \cdot I = 65 \Omega \cdot 21,5 \text{ mA} = 1,4 \text{ V}$$

$$P_{R1} = U_{R1} \cdot I = 7.1 \text{ V} \cdot 21.5 \text{ mA} = 0.15 \text{ W}$$

$$P_{R2} = U_{R2} \cdot I = 21,5 \text{ V} \cdot 21,5 \text{ mA} = 0,46 \text{ W}$$

$$P_{E1} = U_{E1} \cdot I = 1,4 \text{ V} \cdot 21,5 \text{ mA} = 0,03 \text{ W}$$

$$P_{ges} = U \cdot I = 30 \text{ V} \cdot 21,5 \text{ mA} = 0,65 \text{ W}$$

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Leistungsaufnahme bei 90V Quellspannung:

$$R_{E1} = R_q - R_1 - R_2 = 1500 \Omega - 330 \Omega - 1000 \Omega = 170 \Omega$$

$$U_{R1} = R_1 \cdot I = 330 \ \Omega \cdot 0.06 \ A = 19.8 \ V$$

$$U_{R2} = R_2 \cdot I = 1000 \Omega \cdot 0,06 A = 60 V$$

$$U_{F1} = R_{F1} \cdot I = 170 \Omega \cdot 0.06 A = 10.2 V$$

$$P_{R1} = U_{R1} \cdot I = 19.8 \text{ V} \cdot 0.06 \text{ A} = 1.19 \text{ W}$$

$$P_{R2} = U_{R2} \cdot I = 60 \text{ V} \cdot 0,06 \text{ A} = 3,6 \text{ W}$$

$$P_{E1} = U_{E1} \cdot I = 10,2 \text{ V} \cdot 0,06 \text{ A} = 0,61 \text{ W}$$

$$P_{ges} = U \cdot I = 90 \text{ V} \cdot 0.06 \text{ A} = 5.4 \text{ W}$$

Leistungsaufnahme bei 120V Quellspannung:

$$R_{E1} = R_0 - R_1 - R_2 = 1500 \Omega - 330 \Omega - 1000 \Omega = 170 \Omega$$

$$U_{R1} = R_1 \cdot I = 330 \Omega \cdot 0.08 A = 26.4 V$$

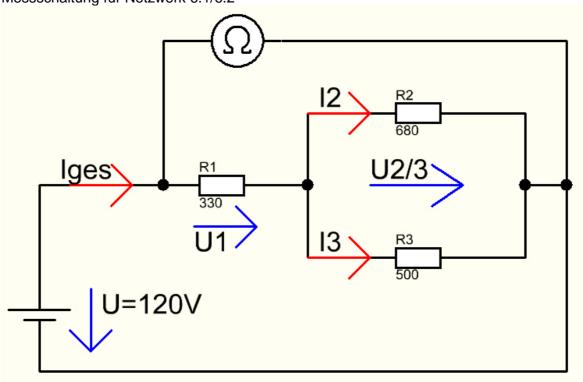
$$U_{R2} = R_2 \cdot I = 1000 \ \Omega \cdot 0,08 \ A = 80 \ V$$

$$U_{E1} = R_{E1} \cdot I = 170 \ \Omega \cdot 0.08 \ A = 13.6 \ V$$

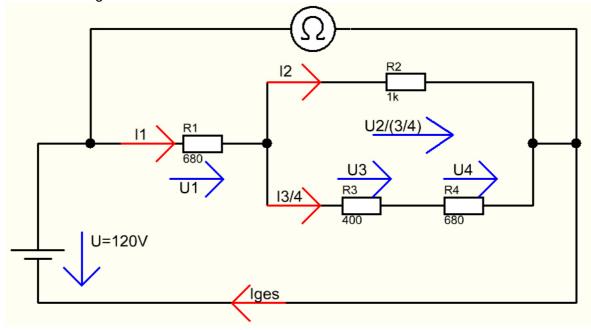
$$P_{R1} = U_{R1} \cdot I = 26,4 \text{ V} \cdot 0,08 \text{ A} = 2,11 \text{ W}$$

$$P_{R2} = U_{R2} \cdot I = 80 \text{ V} \cdot 0.08 \text{ A} = 6.4 \text{ W}$$

$$P_{E1} = U_{E1} \cdot I = 13,6 \text{ V} \cdot 0,08 \text{ A} = 1,09 \text{ W}$$

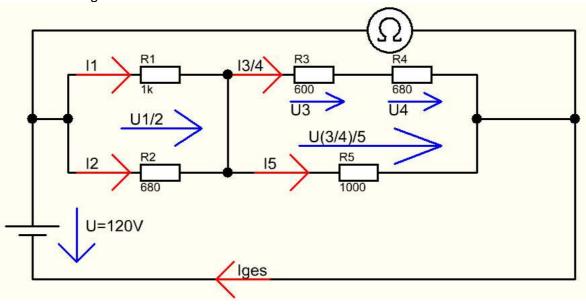

$$P_{ges} = U \cdot I = 120 \text{ V} \cdot 0.08 \text{ A} = 9.6 \text{ W}$$

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke


4. Aufgabe 3

Die Messschaltungen sind jeweils mit den Messgeräten für die Aufgabe 4 erstellt.

Messschaltung für Netzwerk 6.1/6.2

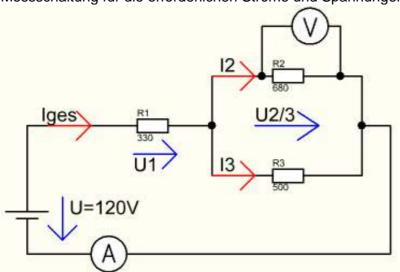


Messschaltung für Netzwerk 6.3/6.4

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Messschaltung für Netzwerk 6.5/6.6

5. Aufgabe 4


Tabelle mit Messwerten der direkten Widerstands-Messung

Netzwerk	R_g in Ω
6.1	621
6.3	1207
6.5	978

6. Aufgabe 5

6.1 Messungen und Berechnungen im Netzwerk 6.1

Messschaltung für die erforderlichen Ströme und Spannungen

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

1. Messung der erforderlichen Werte:

$$I_{ges} = 0,195 A$$

$$U_{R2} = 56 \text{ V}$$

2. Berechnung der übrigen Werte:

$$I_{R1} = I_{ges} = 0,195 A$$

$$U_{R3} = U_{R2} = 56V$$


$$U_{R1} = U - U_{R2} = 120 \text{ V} - 56 \text{ V} = 64 \text{ V}$$

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{56V}{680\Omega} = 0,082 \text{ A}$$

$$I_{R3} = I_{R1} - I_{R2} = 0,113 \text{ A}$$

6.2 Messungen und Berechnungen im Netzwerk 6.3

Messschaltung für die erforderlichen Ströme und Spannungen

1. Messung der erforderlichen Werte:

$$I_{ges} = 0.1 A$$

$$U_{R2} = 52,2 \text{ V}$$

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

2. Berechnung der übrigen Werte:

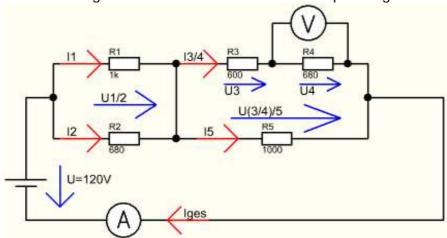
$$I_{R1} = I_{ges} = 0.1 A$$

$$U_{R3,R4} = U_{R2} = 52,2V$$

$$U_{R3} = \frac{U_{R3,R4}}{R_3 + R_4} * R_3 = \frac{52,2V}{1080\Omega} * 400\Omega = 19,3 \text{ V}$$

$$U_{R4} = U_{R3,R4} - U_{R3} = 52,2 \text{ V} - 19,3 \text{ V} = 32,9 \text{ V}$$

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{52,2V}{1000\Omega} = 0,052 \text{ A}$$


$$I_{R3} = I_{R1} - I_{R2} = 0.1 A - 0.052 A = 0.048 A$$

$$I_{R4} = I_{R3} = 0.048 A$$

$$U_{R1} = R_1 \cdot I_{R1} = 680 \ \Omega \cdot 0.1 \ A = 68 \ V$$

6.3 Messungen und Berechnungen im Netzwerk 6.5

Messschaltung für die erforderlichen Ströme und Spannungen

1. Messung der erforderlichen Werte:

$$I_{ges} = 0,122 A$$

$$U_{R4} = 36.7 \text{ V}$$

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

2. Berechnung der übrigen Werte:

$$I_{R4} = \frac{U_{R4}}{R_4} = \frac{36,7V}{680\Omega} = 0,054 \text{ A}$$

$$I_{R3} = I_{R4} = 0.054 A$$

$$U_{R3} = I_{R3} \cdot R_3 = 0,054 \text{ A} \cdot 600 \Omega = 32,4 \text{ V}$$

$$U_{R5} = U_{R3} + U_{R4} = 32,4 \text{ V} + 36,7 \text{ V} = 69,1 \text{ V}$$

$$U_{R1} = U - U_{R5} = 120 \text{ V} - 69,1 \text{ V} = 50,9 \text{ V}$$

$$U_{R2} = U_{R1} = 50.9 \text{ V}$$

$$I_{R1} = \frac{U_{R1}}{R_1} = \frac{50.9V}{1000\Omega} = 0.051 \text{ A}$$

$$I_{R2} = I_{ges} - I_{R1} = 0.122 A - 0.051 A = 0.071 A$$

$$I_{R5} = \frac{U_{R5}}{R_c} = \frac{69.1V}{1000\Omega} = 0.069 \text{ A}$$

7. Aufgabe 6

7.1.1 Berechnung von R₃ im Netzwerk 6.2

Gegeben: U = 120 V

 $R_1 = 330 \Omega$

 $R_2 = 680 \Omega$

 $I_1 = 230 \text{ mA} = 0.23 \text{ A}$

Gesucht: R₃

$$U1 = R1 \cdot I1 = 330 \ \Omega \cdot 0,23 \ A = 75,9 \ V$$

Da U₁ in Reihe mit der Parallel-Schaltung von U₂ und U₃ geschaltet ist, gilt:

$$U_2 = U_3 = U - U_1 = 120 \text{ V} - 75,9 \text{ V} = 44,1 \text{ V}$$

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Nun können die Ströme I₂ und I₃ errechnet werden:

$$I_2 = \frac{U_2}{R_2} = \frac{44,1V}{680\Omega} = 0,065 \text{ A} = 65 \text{ mA}$$

$$I_3 = I_1 - I_2 = 230 \text{ mA} - 65 \text{ mA} = 165 \text{ mA}$$

Mit I₃ und U₃ kann man nun den gewünschten Widerstand R₃ berechnen:

$$R_3 = \frac{U_3}{I_3} = \frac{44,1V}{0,165A} = 267,3 \Omega$$

7.1.2 Überprüfung des Rechenwertes durch Messung

Um den Widerstand R_3 zu messen wurde in der Schaltung ein Ampere-Meter zur Messung des Stromes I_1 verwendet. An der Widerstandsdekade, die für R_3 verbaut wurde, wurde der Widerstand so lange geändert, bis der Wert von I_1 dem angegebenen Wert entsprach. Der nun eingestellte Wert an der Widerstandsdekade war der Widerstands-Wert von R_3 .

Messwert für
$$R_3$$
: R_3 = 263 Ω

Der Rechenwert war 267,3 Ω . Die Abweichung zum Rechenwert von 4,3 Ω kann durch die üblichen Messungenauigkeiten erklärt werden.

7.2.1 Berechnung von R₃ im Netzwerk 6.4

Gegeben: U = 120 V

 $R_1 = 680 \Omega$

 $R_2 = 1 k\Omega = 1000 \Omega$

 $R_4 = 680 \Omega$

 $I_2 = 70 \text{ mA} = 0.07 \text{ A}$

Gesucht: R₃

$$U_2 = R_2 \cdot I_2 = 1000 \Omega \cdot 0,07 A = 70 V$$

Da R₃ und R₄ parallel zu R₂ geschaltet sind, ergibt sich:

$$U_{3,4} = U_2 = 70 \text{ V}$$

Da die Parallelschaltung R₂ zu R₃ und R₄ in Reihe mit R₁ steht ergibt sich daraus:

$$U_1 = U - U_2 = 120 \text{ V} - 70 \text{ V} = 50 \text{ V}$$

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Nun können die Ströme I₁ und I_{3,4} berechnet werden:

$$I_1 = \frac{U_1}{R_1} = \frac{50V}{680\Omega} = 0,074 \text{ A} = 74\text{mA}$$

$$I_{3,4} = I_1 - I_2 = 74\text{mA} - 70\text{mA} = 4\text{mA} = 0,004 \text{ A}$$

Daraus lässt sich der Widerstand R_{3,4} berechnen:

$$R_{3,4} = \frac{U_{3,4}}{I_{3,4}} = \frac{70V}{0,004A} = 17500 \Omega$$

Aus $R_{3,4}$ und dem gegebenen Widerstand R_4 lässt sich nun der gesuchte Widerstand R_3 errechnen:

$$R_3 = R_{3.4} - R_4 = 17500 \Omega - 680 \Omega = 16820 \Omega = 16,82 k\Omega$$

7.2.2 Überprüfung des Rechenwertes durch Messung

Für die Messung des Widerstandes R_3 wurde genau so verfahren wie unter 7.1.2 beschrieben. Da der errechnete Widerstand größer war als 10 k Ω musste zusätzlich zur Widerstandsdekade noch ein 10 k Ω Widerstand in Reihe geschaltet werden. Für R_3 ergab sich dann:

Messwert für
$$R_3$$
: R_3 = 18 k Ω

Im Vergleich zum Rechenwert 16,82 k Ω entsteht also eine Differenz von etwas über einem k Ω . Auch diese lässt sich mit den üblichen Messungenauigkeiten erklären.

7.3.1 Berechnung von R₃ im Netzwerk 6.6

Gegeben: U = 120 V

 $R_1 = 1000 \Omega = 1 k\Omega$

 $R_2 = 680 \Omega$

 $R_4 = 680 \Omega$

 $R_5 = 1000 \Omega = 1k\Omega$

 $U_4 = 40 \text{ V}$

Gesucht: R₃

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

Es sind zunächst folgende Berechnungen im Netzwerk 6.6 möglich:

$$14 = \frac{U_4}{R_4} = \frac{40V}{680\Omega} = 0,059 \text{ A} = 59\text{mA}$$

$$I_3 = I_4 = 59 \text{ mA}$$

R1,2 =
$$\frac{R_1 * R_2}{R_1 + R_2}$$
 = $\frac{680\Omega * 1000\Omega}{680\Omega + 10000\Omega}$ = 405 Ω

Für weitere Berechnungen fehlten hier die Ansätze, da aus den gegebenen und errechneten Werten keine weiteren Ströme und Spannungen berechnet werden konnten. Es lässt sich nach dem 2. Kirchhoffschen Gesetz allerdings noch eine Gleichung aufstellen mit der man U_3 berechnen könnte. Mit U_3 und dem errechneten I_3 könnte man dann nach dem Ohmschen Gesetz R_3 ermitteln.

Laut 2. Kirchhoffschen Gesetz gilt:

$$U_3 + U_4 + U_5 = 0 \rightarrow U_3 = U_5 - U_4$$

7.3.2 Messtechnische Ermittlung von R₃

Um R_3 messtechnisch zu ermitteln wird verfahren wie unter 7.1.2 beschrieben. Da R_3 in diesem Fall rechnerisch noch nicht ermittelt war musste ohne Anhaltspunkt nach R_3 gesucht werden und die Ermittlung war zeitaufwändiger. Es ergab sich dann für R_3 :

Messwert für
$$R_3$$
: R_3 = 461 Ω

Mit dem gemessenen Wert konnte man nun einige Berechnungen zur Überprüfung durchführen:

$$U_3 = I_3 \cdot R_3 = 0,059 \text{ A} \cdot 461 \Omega = 27,2 \text{ V}$$

Mit dem 2. Kirchhoffschen Gesetz lässt sich nun U₅ ermitteln:

$$U_5 = U_3 + U_4 = 27.2 \text{ V} + 40 \text{ V} = 67.2 \text{ V}$$

Danach lässt sich U_{1,2} und schließlich I_{1,2} berechnen:

$$U_{1,2} = U - U_5 = 120 \text{ V} - 67,2 \text{ V} = 52,8 \text{ V}$$

$$I_{1,2} = \frac{U_{1,2}}{R_{1,2}} = \frac{52,8V}{405\Omega} = 0,13 \text{ A}$$

Datum:	Fach:	Übung:
10.11.2008	Elektrotechnik	1.2 Kirchhoffsche Gesetze und einfache Netzwerke

$$I_{\text{ges}} = I_{1.2} = 0.13 \text{ A}$$

Aus I_{ges} und U ergibt sich der Gesamtwiderstand R_{ges}:

$$R_{ges} = \frac{U}{I_{ges}} = \frac{120V}{0.13A} = 923 \Omega$$

Der Gesamtwiderstand lässt sich auch direkt berechnen:

R3,4,5 =
$$\frac{(R_3 + R_4)^* R_5}{R_3 + R_4 + R_5} = \frac{1441k\Omega}{2,14k\Omega} = 532 \Omega$$

$$R_{ges} = R_{1,2} + R_{3,4,5} = 405 \Omega + 532 \Omega = 937 \Omega$$

Vergleicht man nun die beiden errechneten Werte für R_{ges} ergibt sich eine Differenz von 14 Ω . Diese recht große Differenz lässt sich durch die erhebliche Ungenauigkeit beim Messer erklären.