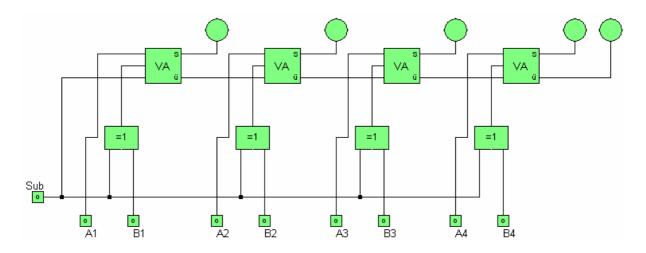
4-Bit Addierwerk (Ripple-Carry-Adder)



Weitere wichtige Schaltfunktionen

NAND (= NOT AND)

Funktionstabelle:

Α	В	$A \cdot B$	$\overline{A \cdot B}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Symbol:

Das NAND ist das negierte AND (UND).

NOR (=NOT OR)

Funktionstabelle:

А	В	A+B	$\overline{A+B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Symbol:

Das NOR ist das negierte OR (ODER).

Vollständige Systeme

Mit AND, OR und NOR kann man jede beliebige Schaltfunktion realisieren

⇒ Vollständiges System

Mit NAND kann man ebenfalls jede beliebige Schaltfunktion realisieren

⇒ Vollständiges System

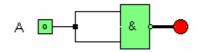
NOR ist ebenfalls ein vollständiges System

Beweis für NAND:

NICHT nur mit NAND

$$\overline{A} = \overline{A \cdot A}$$
 (Idempotenzgesetz)

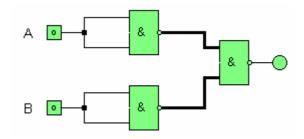
Logikplan:



ODER nur mit NAND

$$A + B = \overline{(\overline{A + B})} \quad \text{(doppeltes Komplement)}$$
$$= \overline{\overline{A + B}} \quad \text{(De Morgan)}$$
$$= \overline{\overline{A \cdot A \cdot B \cdot B}}$$

Logikplan:



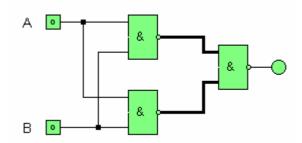
UND nur mit NAND

$$A \cdot B = (A \cdot B) + (A \cdot B) \qquad \text{(Idempotenzgesetz)}$$

$$= \overline{(A \cdot B) + (A \cdot B)} \qquad \text{(doppeltes Komplement)}$$

$$= \overline{\overline{A \cdot B} \cdot \overline{A \cdot B}} \qquad \text{(De Morgan)}$$

Logikplan:



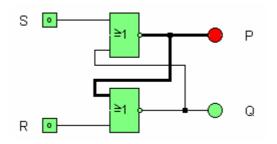
Funktion in DNF umwandeln in Funktion nur mit NAND

$$y = \left(A \cdot \left(B \cdot \overline{C}\right)\right) + \left(A \cdot C\right)$$
$$= \overline{\left(A \cdot \left(B \cdot \overline{C}\right)\right) + \left(A \cdot C\right)}$$
$$= \overline{A \cdot \left(B \cdot \overline{C}\right)} \cdot \left(\overline{A \cdot C}\right)$$

RS-Flipflop

- aufgebaut aus zwei kreuzgekoppelten NOR (oder NAND) Gattern
- Setz und Rücksetzeingang

Logikplan:



Fallunterscheidung:

$$S = 1; R = 0 \rightarrow P = 0; Q = 1$$

$$S = 0$$
; $R = 1 \rightarrow P = 1$; $Q = 0$

$$S = 0$$
; $R = 0$; $Q = 1 \rightarrow P = 0$; $Q = 1$

$$S = 0$$
: $R = 0$: $Q = 0 \rightarrow P = 1$: $Q = 0$

Q ist der gespeicherte Binärwert. Am Anschluss P kann der Wert von Q invertiert abgegriffen werden. Man bezeichnet den Anschluss deshalb auch mit \overline{Q} .

S = 1; R=1
$$\rightarrow$$
 P = O; Q = 0, d.h. P = \overline{Q} ist verletzt.

→ Diese Situation ist **verboten**, weil sie so nicht definiert ist!

Funktionstabelle RS-FF

Eingangs	Eingangsvariable Zustandsvaria		svariable	Ausgangsvariable	
S	R	Q	Р	O ⁺	P ⁺
0	0	0	1	0	1
0	0	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
0	1	0	1	0	1
0	1	1	0	0	1
1	1	0	1	X	X
1	1	1	0	Х	Х

Q, P = aktueller Zustand Q^+ , P^+ = neuer Zustand

Die ersten beiden Zeilen zeigen die Speicherfunktion: Liegt kein Wert an, so wird der aktuelle Wert beibehalten

Die dritte und vierte Zeile zeigen die Setzfunktion: Liegt bei Q eine 1 an, wird sie in den Speicher geschrieben.

Die fünfte und sechste Zeile zeigen die Rücksetzfunktion: Liegt bei R eine 1 an, wird Q auf 0 gesetzt.

Die letzten beiden Zeilen zeigen die unzulässige Einstellung, wenn an beiden Eingängen eine 1 anliegt. Für diese Einstellung werden auf Grund der Nicht-Zulässigkeit in der Funktionstabelle "don't cares" gesetzt.

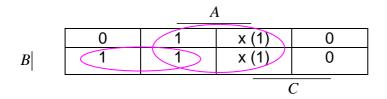
Weil bei bestimmungsgemäßen Betrieb immer P = Q gilt, wird nachfolgend nur noch Q aufgeführt.

Q ist der gespeicherte Zustand.

Funktionstabelle des RS - FF (nur noch mit Q als Zustand)

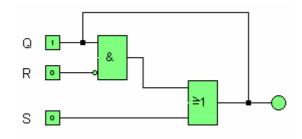
S	R	Q	Q^{\dagger}
0	0	0	0
1	0	0	1
0	1	0	0
0	0	1	0
1	1	0	Χ
1	0	1	1
0	1	1	1
1	1	1	Χ

KV – Diagramm:



$$Q^+ = S + (Q \cdot \overline{R})$$
 (charakteristische Gleichung des RS – FF)

Logikplan:



Zeichenerklärung:

Die erstellten Logikpläne haben einige neue Schaltzeichen, die hier kurz erklärt werden.

1) Schalter: Gibt entweder eine 0 oder 1 auf die angeschlossene Leitung aus.

2) LED: Zeigt auch AUS oder AN den Zustand der Ausgangsvariablen an.

