Synchrone Zählschaltwerke

Beispiel:

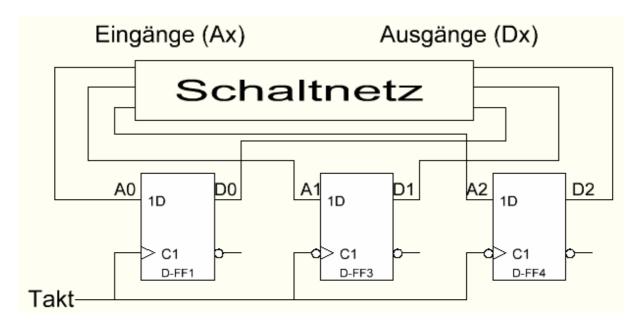
• Entwicklung eines 3-Bit-Binär-Abwärtszählers

• Zählfolge: 7,6,5,4,3,2,1,0,7... (111 – 000)

Konzept:

- Zählerstand wird im Zustandsspeicher abgelegt
- Zustandszähler besteht aus 3 Flipflops, je ein Flipflop pro Binärzähler
- Schaltnetz sorgt dafür, dass vom aktuellen Zählerstand zur nächsten Ziffer weiter gezählt wird

Skizze:



Merke: Synchronzähler, weil alle Flipflops mit dem gleichen Taktsignal versorgt werden.

Konstruktion des Schaltnetzes

(Bemerkung: Der Takt ist kein Informationsträger und wird im Weiteren nicht betrachtet.)

Funktionstabelle:

x = Entsprechende Binärstelle

 A_x = Eingestellter Wert, der auch angezeigt wird und in das Schaltnetz läuft

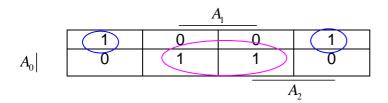
D_x = Neuer Zustand, der nach dem Durchlaufen des Flipflops erreicht wird

Zahl	A_2	A ₁	A_0	D_2	D_1	D ₀
0	0	0	0	1	1	1
1	0	0	1	0	0	0
2	0	1	0	0	0	1
3	0	1	1	0	1	0
4	1	0	0	0	1	1
5	1	0	1	1	0	0
6	1	1	0	1	0	1
7	1	1	1	1	1	0

KV – Diagramm für D₀

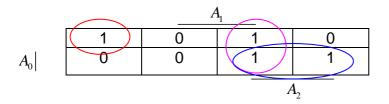
$$D_0 = \overline{A_0}$$

KV – Diagramm für D₁



$$D_{1} = \left(\overline{A_{0}} \cdot \overline{A_{1}}\right) + \left(A_{0} \cdot A_{1}\right) = \left(A_{0} \equiv A_{1}\right)$$

KV – Diagramm für D₂



$$D_2 = (A_0 \cdot A_2) + (A_1 \cdot A_2) + (\overline{A_0} \cdot \overline{A_1} \cdot \overline{A_2})$$

Veränderung der Zählfolge:

Zählfolge: 0,1,3,5,3,2,0...

Man muss in diesem Fall, weil die 3 doppelt vorkommt, einen Ersatzcode finden, indem die 3 z.B. durch eine 4 ersetzt wird. Diese 4 wird dann durch einen Codekonverter, der hinter das Dekodierschaltnetz geschaltet wird, wieder zu einer 3, die dann ausgegeben wird.

Entwurf eines umschaltbaren Zählers

Eine Eingangsvariable X

X = 0: Zählfolge 0,1,2,3,0...

X = 1: Zählfolge 3,2,1,0,1...

(Umschaltbarer Vorwärts/Rückwärts – Zähler der im Binärcode zählt)

Funktionstabelle:

Zahl	Χ	A_1	A_0	D_1	D_0
0	0	0	0	0	1
1	0	0	1	1	0
2	0	1	0	1	1
3	0	1	1	0	0
4	1	0	0	1	1
5	1	0	1	0	0
6	1	1	0	0	1
7	1	1	1	1	0

Für D₀ gilt wie im ersten Beispiel aufgrund der unveränderten Positionen der Einsen in der Funktionstabelle:

$$D_0 = \overline{A_0}$$

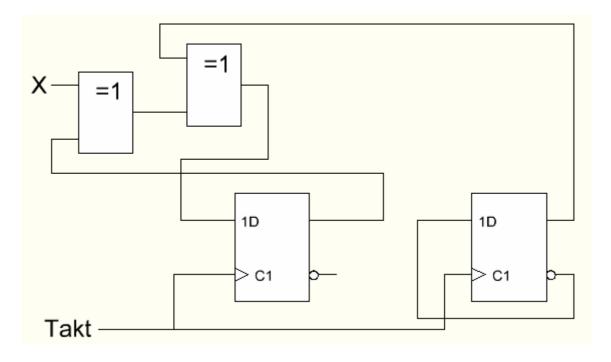
KV – Diagramm:

	$\underline{\hspace{1cm}}$					
	0	1	0	1		
X	1	0	1	0		
	$\overline{}$					

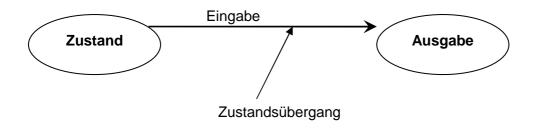
Da die Minimierung mit dem KV – Diagramm nicht gemacht werden kann, wird nach den Regeln der Boolschen Algebra minimiert.

$$\begin{split} D_1 &= \left(X \cdot \overline{A_0} \cdot \overline{A_1} \right) + \left(\overline{X} \cdot A_0 \cdot \overline{A_1} \right) + \left(X \cdot A_0 \cdot A_1 \right) + \left(\overline{X} \cdot \overline{A_0} \cdot \overline{A_1} \right) \\ &= X \cdot \left(\left(\overline{A_0} \cdot \overline{A_1} \right) + \left(A_0 \cdot A_1 \right) \right) + \overline{X} \cdot \left(\left(A_0 \cdot \overline{A_1} \right) + \left(\overline{A_0} \cdot A_1 \right) \right) \\ &= X \cdot \left(A_0 \equiv A_1 \right) + \overline{X} \cdot \left(A_0 \neq A_1 \right) \\ &= \left(X \cdot \overline{k} \right) + \left(\overline{X} \cdot k \right) \qquad \qquad k = \left(A_0 \neq A_1 \right) \\ &= X \neq k \\ &= X \neq A_0 \neq A_1 \end{split}$$

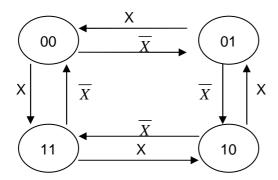
Logikplan:



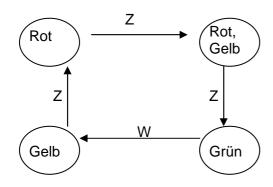
Zustandsübergangsdiagramm:



Am Beispiel Auf/Ab - Zähler



Zustandsübergangsdiagramm für eine Ampel



W = Warteknopf betätigt

Z = Zeit abgelaufen

1. Schritt: Zustandsübergangsdiagramm

2. Schritt: Zustandscodierung → Binärwerte für Zustände entwickeln (Bsp.: Grün = 001, Gelb = 010, Rot = 100, Rot-Gelb = 110)