
Audio Engineering Society

Convention e-Brief 88
Presented at the 134th Convention

2013 May 4–7 Rome, Italy

This Engineering Brief was selected on the basis of a submitted synopsis. The author is solely responsible for its presentation,

and the AES takes no responsibility for the contents. All rights reserved. Reproduction of this paper, or any portion thereof, is not

permitted without direct permission from the Audio Engineering Society.

 Workload estimation for low-delay
segmented convolution

Malte Spiegelberg

HAW Hamburg, Hamburg, 22081, Germany
Malte.Spiegelberg@haw-hamburg.de

ABSTRACT

Zero-delay convolution usually follows a hybrid approach with convolution processing steps in both, the time and

the frequency domain (Gardner, J. AES 43 (1995) [1]). Implementations are likely to ask for dynamic coding, and

related workload estimations are focused on efficiency and are limited to the hybrid approach. This paper considers

simpler implementations of segmented convolution that work in the frequency domain only and that achieve

acceptable low delay for real-time applications when processing several seconds of impulse-response in FIR mode.

Workload and memory demand are estimated for this approach in the context of likely application parameters.

1. INTRODUCTION

This paper considers the task of convolving an input

signal with another signal, say a room impulse response

of considerable length. To solve this computational task,

here, the input and the impulse response are divided into

segments and are zero-padded to prepare for

convolution. The segment size is chosen in context of

application.

2. NOTATION

The following variables are assigned:

x[n] Input signal

Lx Length of x[n]

N Length of a segment xk[n]

h[n] Impulse response

Lh Length of h[n]

P Length of a segment hi[n]

y[n] Output signal

Ly Length of y[n]

Capital letters are used for signals in the frequency

domain, so X[f] is the Fourier transformed input signal

x[n].

3. SEGMENTED CONVOLUTION

In signal processing tasks impulse responses of

considerable length are occasionally convolved with

other signals. The related computational effort can be

lowered when processing large signal segments in the

frequency domain. Real-time applications, however,

Spiegelberg <Workload Est. for Segmented Convolution>

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 2 of 4

may dictate use of small segments. Therefore, input

signal and impulse response are divided into segments.

In this way, the output can start before the whole input

signal is known.

When a segment xk[n] is loaded, it is transformed into

the frequency domain by FFT. The transformed segment

Xk[f] is then multiplied with every segment Hi[f] of the

transformed impulse response. h[n] can be segmented

and transformed during system boot so that transformed

segments Hi[f] are present in memory. The result of the

multiplication Yki[f] is transformed back into time

domain by the inverse FFT, IFFT. Finally, an overlap-

add of all segments yki[n] results in the output signal

y[n] [Fig. 1][2].

Figure 1 The process of segmented convolution

The size P of the segments hi[n] is an important

parameter in the calculation. When P is smaller than N,

the number of terms in the final overlap-add calculation

increases unfortunately, computational effort will

increase. When P is larger than N, a segment xk[n] and

its resulting segments will stay in the process longer

than necessary, memory demand will increase. Hence,

the most efficient method is using N = P.

A tutorial example with very short segment length

illustrates input, segmentation and overlap-add

calculation of convolved segments (1).

[] []
[] []

[]
[] ()

()[]
[] ()

1, 2, 3, ..., 31, 32

1,1, 2, 2, 4, 4, 2,1

4

4 1 3

0

, 4 1 4 1
1 4

0

k

i

x n

h n

N P

x n if k n k
x n

else

h n if i n i
h n i

else

=

=

= =

− ≤ ≤
=

− ≤ ≤ −
− − =









 (1)

[]
[]
[]
[]
[]
[]

[]

1 1 1

11

12

21

22

31

32

1 3 7 13 14 14 8

4 12 22 33 24 11 4

5 11 23 37 34 30 16

20 44 62 77 52 23 8

9 19 39 61 54 46 24

36 76 102 121 80 35 12

1 3 7 13 23 37 53 70 87 104 121 138 ...

P P P

y n

y n

y n

y n

y n

y n

y n

− − −64748 64748 64748

4. WORKLOAD ESTIMATION

This section models computation effort to finally

suggest optimal N = P in the context of application

demand. The process of segmented convolution takes

four steps of processing:

• FFT of an input segment xk[n]

• Multiplication with the segments Hi[f] of the

transformed impulse response

• IFFT of the resulting segments Yki[f]

• Overlap-add of the segments yki[n]

4.1. FFT of input segments xk[n]

The length of the result of an input segment xk[n] of

length N convoluted with the impulse response segment

hi[n] of length P is N + P - 1. Therefore input segment

and impulse response segment have to be zero-padded

to length N + P - 1 before FFT calculation. For this

workload estimation, the Radix-2 Algorithm will be

used. This will request a total input length of M = 2n.

Therefore N should match P and zero-padding targets

the length M = 2N. There will be M / 2 complex

multiplications and M complex additions [3, p. 23].

These complex operations will cost as 5M flops

considering that a complex addition will need two real

additions and a complex multiplication will need three

real multiplications and three real additions [3, p. 15].

The effort for one segment xk[n] will be

()21 log5W M M⋅= (2)

flops.

4.2. Multiplication with the segments Hi[f]

The impulse response of length Lh is split into Lh / P
segments with the same amount of segments after

transformation. The result of every of the FFTs

Spiegelberg <Workload Est. for Segmented Convolution>

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 3 of 4

calculated before is multiplied with every segment Hi[f].

This will need 12 * Lh flops for one segment Xk[f] to

obtain the result Yki[f].

4.3. IFFT of the resulting segments Yki[f]

All segments Yki[f] have to be transformed back into

time domain with the IFFT operation. IFFT and FFT

have the same effort. So for every segment Yki[f] there

will be

()()
22

5 log
h

L
M M

P
W ⋅ ⋅= (3)

flops.

The calculations shown have to be done for each

segment of x[n]. When x[n] is split into segments of

length N, there are Lx / N segments. Adding this factor

and taking the estimations before, the workload

estimation before the overlap-add can be calculated. It

will be

()2
12 1 5 logx h

T h

L L
W L M M

N P
= ⋅ ⋅ + + ⋅ ⋅

  
  
  

 (4)

flops.

4.4. Overlap-add of the segments yki[n]

An overlap-add calculation only requires real additions

and the amount of terms depends on the number of

segments in x[n] and h[n]. This number grows from the

beginning of the operation to a maximum of Lx + Lh – 1

- 2P terms for each segment y[n], see examples. The

workload of the overlap-add calculation can be

described for the whole calculation. For the estimation,

the whole calculation is considered to be at maximum

overlap. The total amount of additions for the overlap
therefore is

()2 2 1 1 1
x h h h

over

L L L L
P

N P P P
W + − ⋅ ⋅ − ⋅ − + −

    =     
    

 (5)

flops.

4.5. Estimation Results

The following table provides data for different sample

rates and impulse response lengths see Table 1. Lx is set
to one second according to the sample rate. Therefore,

the numbers represent operations per second. The line

with N = P = 1 represents discrete convolution, the last

two lines represent the convolution in the spectral

domain with Fourier transformations across the entire
sound.·

Lh = 2 Sec. @ 44.1 kHz Lh = 0.5 Sec. @ 48 kHz

N P=
T over

W W+
T over

W W+

1 1.56 · 10
10

1.15 · 10
9

8 2.53 · 10
10

 7.49 · 10
9

16 1.51 · 10
10

 4.47 · 10
9

32 8.75 · 10
9
 2.59 · 10

9

64 4.99 · 10
9
 1.48 · 10

9

128 2.80 · 10
9
 8.32 · 10

8

256 1.55 · 10
9
 4.63 · 10

8

44100 2.28 · 10
7

 48000 1.22 · 10
7

Table 1 Workload estimation for two commonly

used sample rates, N = P = 1 represents discrete

convolution in the time domain

2.08e−5 4.17e−5 8.33e−5 1.67e−4 3.33e−4 6.67e−4 1.33e−3 2.67e−3

2.27e−5 4.54e−5 9.07e−5 1.81e−4 3.63e−4 7.26e−4 1.45e−3 2.9e−3

4.54e−5 9.09e−5 1.82e−4 3.63e−4 7.27e−4 1.46e−3 2.91e−3 5.81e−3

1 2 4 8 16 32 64 128
10

8

10
9

10
10

10
11

W
o

rk
lo

a
d

1 sek. @ 22 kHz

2 sek. @ 22 kHz

1 sek. @ 44.1 kHz

2 sek. @ 44.1 kHz

1 sek. @ 48 kHz

2 sek. @ 48 kHz

Sec. (Fs = 22 kHz)

Segment Length (N = P)

Sec. (Fs = 48 kHz)

Sec. (Fs = 44.1 kHz)

Figure 2 Workload estimation versus segmentation

length N = P, workload represents the total flops WT +

Wover, amended scales represent processing delay in

relation to segmentation length and sample rate.

5. MEMORY ESTIMATION

Implementation of segmented convolution will require

memory in a predictable way. Memory estimation takes

into account that memory can be overwritten as soon as

a segment xk[n] is no longer part of the calculation. The

transformed segments Hi[f] of the impulse response will

be needed for the whole calculation so these cannot be
overwritten.

It is possible to estimate the memory needed for the

whole calculation. As maximum memory should be

estimated, the sectors with maximum overlap are

considered. At this point of the calculation 2 · Lh / P

Spiegelberg <Workload Est. for Segmented Convolution>

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 4 of 4

segments are active in the calculation. Another Lh / P

segments have to be prepared for the next sector, so

memory is also required for these segments. The total
amount of samples to be stored in memory is:

()

[]

()
[] {

()
[] {

segment
loading next

segments

Segment
maximum overlap segments

2 2 1
2 2 1

2
2 2 1

k

i

j

h h

X n

H n

h

Y n

P L L
N

P P

L
N S Bit

P

⋅ − ⋅
+ ⋅ − ⋅

⋅
+ ⋅ − ⋅ ⋅

 
     

   
  

 
 
 
  

14243
1442443

14243

 (6)

And for N = P:

()
8

2 1
h

L
P S Bit

P
− ⋅ ⋅ (7)

For instance, with the examples from section 4 [Tab. 1,

Fig. 2], a second of impulse response at 44,1 kHz and N

= P = 64 needs 7 · 10
5
 samples in memory, and an

extreme case, two seconds at 48 kHz and N = P = 2

needs 1,15 · 106 samples.

6. OPTIMIZATION

There are further options to reduce processing power or

memory demand by proposed algorithms, even before

processor-specific optimization.

For instance, the calculation can optionally be optimized

by a factor of two when using an interleaving of the

input signal segments. Two segments x1[n] and x2[n]

form a complex value z1[n] that is transformed and

multiplied with all transformed segments of h[n]. The

result ZE1[f] is then transformed back into the time

domain. The segments yki[n] are the real and imaginary

part of the results zej[n] [4].

Or alternatively, the process can be improved by using

other FFT algorithms. Radix 4 and Split-Radix are two

examples of common FFT-Algorithms that can reduce

workload. An optimized FFT method for low latency

convolution is presented in [5].

Concerning data format, working with floating point is

recommended as coding will be simpler compared to

fixed point usage.

7. SUMMARY

Workload and memory demand are estimated for the

segmented convolution in the spectral domain. The

approach translates parameter size such as sample size

and sample rate to suggest window size and related

delays for individual applications. Feasibility can be

evaluated before implementation on specific processors.

8. REFERENCES

[1] William G. Gardner, “Efficient Convolution

without Input-Output Delay” in Journal of the

Audio Engineering Society, Vol. 43 (3), 127-136

(1995)

[2] Steven W. Smith, The Scientist and Engineer's

Guide to Digital Signal Processing, California

Technical Publishing, 1997

[3] Eleanor Chu and Alan George, Inside the FFT

Black Box: Serial and Parallel Fast Fourier

Transform Algorithms, CRC Press, 2010

[4] Udo Zölzer, Digitale Audiosignalverarbeitung,

Vieweg+Teubner Verlag, 2005

[5] Jeffrey Hurchalla, “A time distributed FFT for

efficient low latency convolution,” Audio

Engineering Society Convention 129, 2010

