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ABSTRACT 

Zero-delay convolution usually follows a hybrid approach with convolution processing steps in both, the time and 

the frequency domain (Gardner, J. AES 43 (1995) [1]). Implementations are likely to ask for dynamic coding, and 

related workload estimations are focused on efficiency and are limited to the hybrid approach. This paper considers 

simpler implementations of segmented convolution that work in the frequency domain only and that achieve 

acceptable low delay for real-time applications when processing several seconds of impulse-response in FIR mode. 

Workload and memory demand are estimated for this approach in the context of likely application parameters. 

 

1.  INTRODUCTION 

This paper considers the task of convolving an input 

signal with another signal, say a room impulse response 

of considerable length. To solve this computational task, 

here, the input and the impulse response are divided into 

segments and are zero-padded to prepare for 

convolution. The segment size is chosen in context of 

application. 

2.  NOTATION 

The following variables are assigned: 

x[n] Input signal 

Lx Length of x[n] 

N Length of a segment xk[n] 

h[n] Impulse response 

Lh Length of h[n] 

P Length of a segment hi[n]  

y[n] Output signal 

Ly Length of y[n] 

Capital letters are used for signals in the frequency 

domain, so X[f] is the Fourier transformed input signal 

x[n]. 

3. SEGMENTED CONVOLUTION 

In signal processing tasks impulse responses of 

considerable length are occasionally convolved with 

other signals. The related computational effort can be 

lowered when processing large signal segments in the 

frequency domain. Real-time applications, however, 
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may dictate use of small segments. Therefore, input 

signal and impulse response are divided into segments. 

In this way, the output can start before the whole input 

signal is known. 

When a segment xk[n] is loaded, it is transformed into 

the frequency domain by FFT. The transformed segment 

Xk[f] is then multiplied with every segment Hi[f] of the 

transformed impulse response. h[n] can be segmented 

and transformed during system boot so that transformed 

segments Hi[f] are present in memory. The result of the 

multiplication Yki[f] is transformed back into time 

domain by the inverse FFT, IFFT. Finally, an overlap-

add of all segments yki[n] results in the output signal 

y[n] [Fig. 1][2]. 

 

Figure 1    The process of segmented convolution 

The size P of the segments hi[n] is an important 

parameter in the calculation. When P is smaller than N, 

the number of terms in the final overlap-add calculation 

increases unfortunately, computational effort will 

increase. When P is larger than N, a segment xk[n] and 

its resulting segments will stay in the process longer 

than necessary, memory demand will increase. Hence, 

the most efficient method is using N = P.  

A tutorial example with very short segment length 

illustrates input, segmentation and overlap-add 

calculation of convolved segments (1). 
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4. WORKLOAD ESTIMATION 

This section models computation effort to finally 

suggest optimal N = P in the context of application 

demand. The process of segmented convolution takes 

four steps of processing:  

• FFT of an input segment xk[n]  

• Multiplication with the segments Hi[f] of the 

transformed impulse response 

• IFFT of the resulting segments Yki[f] 

• Overlap-add of the segments yki[n] 

4.1. FFT of input segments xk[n] 

The length of the result of an input segment xk[n] of 

length N convoluted with the impulse response segment 

hi[n] of length P is N + P - 1. Therefore input segment 

and impulse response segment have to be zero-padded 

to length N + P - 1 before FFT calculation. For this 

workload estimation, the Radix-2 Algorithm will be 

used. This will request a total input length of M = 2n. 

Therefore N should match P and zero-padding targets 

the length M = 2N. There will be M / 2 complex 

multiplications and M complex additions [3, p. 23]. 

These complex operations will cost as 5M flops 

considering that a complex addition will need two real 

additions and a complex multiplication will need three 

real multiplications and three real additions [3, p. 15]. 

The effort for one segment xk[n] will be 

( )21 log5W M M⋅=  (2 ) 

flops. 

4.2. Multiplication with the segments Hi[f] 

The impulse response of length Lh is split into Lh / P 
segments with the same amount of segments after 

transformation. The result of every of the FFTs 
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calculated before is multiplied with every segment Hi[f]. 

This will need 12 * Lh flops for one segment Xk[f] to 

obtain the result Yki[f]. 

4.3. IFFT of the resulting segments Yki[f] 

All segments Yki[f] have to be transformed back into 

time domain with the IFFT operation. IFFT and FFT 

have the same effort. So for every segment Yki[f] there 

will be 

( )( )
22

5 log
h

L
M M

P
W ⋅ ⋅=  (3 ) 

flops. 

 

The calculations shown have to be done for each 

segment of x[n]. When x[n] is split into segments of 

length N, there are Lx / N segments. Adding this factor 

and taking the estimations before, the workload 

estimation before the overlap-add can be calculated. It 

will be 

( )2
12 1 5 logx h

T h

L L
W L M M

N P
= ⋅ ⋅ + + ⋅ ⋅

  
  
  

 (4 ) 

flops. 

4.4. Overlap-add of the segments yki[n] 

An overlap-add calculation only requires real additions 

and the amount of terms depends on the number of 

segments in x[n] and h[n]. This number grows from the 

beginning of the operation to a maximum of Lx + Lh – 1 

- 2P terms for each segment y[n], see examples. The 

workload of the overlap-add calculation can be 

described for the whole calculation. For the estimation, 

the whole calculation is considered to be at maximum 

overlap. The total amount of additions for the overlap 
therefore is 

( )2 2 1 1 1
x h h h

over

L L L L
P

N P P P
W + − ⋅ ⋅ − ⋅ − + −

    =     
    

 (5 ) 

flops. 

4.5. Estimation Results 

The following table provides data for different sample 

rates and impulse response lengths see Table 1. Lx is set 
to one second according to the sample rate. Therefore, 

the numbers represent operations per second. The line 

with N = P = 1 represents discrete convolution, the last 

two lines represent the convolution in the spectral 

domain with Fourier transformations across the entire 
sound.· 

 

Lh = 2 Sec. @ 44.1 kHz Lh = 0.5 Sec. @ 48 kHz 

N P=  
T over

W W+  
T over

W W+  

1 1.56 · 10
10 

1.15 · 10
9
 

8 2.53 · 10
10

 7.49 · 10
9
 

16 1.51 · 10
10

 4.47 · 10
9
 

32 8.75 · 10
9
 2.59 · 10

9
 

64 4.99 · 10
9
 1.48 · 10

9
 

128 2.80 · 10
9
 8.32 · 10

8
 

256 1.55 · 10
9
 4.63 · 10

8
 

44100 2.28 · 10
7
 

 48000 1.22 · 10
7
 

Table 1 Workload estimation for two commonly  

used sample rates, N = P = 1 represents discrete 

convolution in the time domain 
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Figure 2     Workload estimation versus segmentation 

length N = P, workload represents the total flops WT + 

Wover, amended scales represent processing delay in 

relation to segmentation length and sample rate. 

5. MEMORY ESTIMATION 

Implementation of segmented convolution will require 

memory in a predictable way. Memory estimation takes 

into account that memory can be overwritten as soon as 

a segment xk[n] is no longer part of the calculation. The 

transformed segments Hi[f] of the impulse response will 

be needed for the whole calculation so these cannot be 
overwritten.  

It is possible to estimate the memory needed for the 

whole calculation. As maximum memory should be 

estimated, the sectors with maximum overlap are 

considered. At this point of the calculation 2 · Lh / P 
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segments are active in the calculation. Another Lh / P 

segments have to be prepared for the next sector, so 

memory is also required for these segments. The total 
amount of samples to be stored in memory is: 

( )

[ ]
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[ ] {
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[ ] {
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 (6 ) 

And for N = P: 

( )
8

2 1
h

L
P S Bit

P
− ⋅ ⋅  (7 ) 

For instance, with the examples from section 4 [Tab. 1, 

Fig. 2], a second of impulse response at 44,1 kHz and N 

= P = 64 needs 7 · 10
5
 samples in memory, and an 

extreme case, two seconds at 48 kHz and N = P = 2 

needs 1,15 · 106 samples. 

6. OPTIMIZATION 

There are further options to reduce processing power or 

memory demand by proposed algorithms, even before 

processor-specific optimization. 

 

For instance, the calculation can optionally be optimized 

by a factor of two when using an interleaving of the 

input signal segments. Two segments x1[n] and x2[n] 

form a complex value z1[n] that is transformed and 

multiplied with all transformed segments of h[n]. The 

result ZE1[f] is then transformed back into the time 

domain. The segments yki[n] are the real and imaginary 

part of the results zej[n] [4]. 

Or alternatively, the process can be improved by using 

other FFT algorithms. Radix 4 and Split-Radix are two 

examples of common FFT-Algorithms that can reduce 

workload. An optimized FFT method for low latency 

convolution is presented in [5]. 

Concerning data format, working with floating point is 

recommended as coding will be simpler compared to 

fixed point usage.  

7. SUMMARY 

Workload and memory demand are estimated for the 

segmented convolution in the spectral domain. The 

approach translates parameter size such as sample size 

and sample rate to suggest window size and related 

delays for individual applications. Feasibility can be 

evaluated before implementation on specific processors. 
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