Probeklausur für Mathe 2 (Medientechnik, SS 2010)

Hinweise zur Bearbeitung

Als Lösung gelten grundsätzlich der Lösungsweg inklusive aller wichtigen Zwischenschritte und das Endergebnis.

WICHTIG!!

Auch ein falsches Endergebnis kann bei kleinen Fehlern in der Rechnung zu voller Punktzahl führen. Dazu muss allerdings der Rechenweg zum Ergebnis korrekt sein!

<u>Hilfsmittel</u>

Als Hilfsmittel kann eine selbst geschriebene Formelsammlung auf einer DIN-A4 Seite (beidseitig beschrieben oder 2 einseitig beschriebene Seiten) verwendet werden. Elektronische Hilfsmittel sind verboten.

Bearbeitungszeit

Pro Aufgabe sind durchschnittlich 15 Minuten Bearbeitungszeit vorgesehen.

Aufgabe 1: Anwendung der Integralrechnung

Berechnen Sie die Länge des Graphen der Funktion $f: \mathbb{R} \to \mathbb{R}$; $f(x) = \frac{1}{4}x^2 - \ln(\sqrt{x})$ im Intervall $\left[1, e^2\right]$.

Aufgabe 2: Uneigentliche Integrale

Berechnen Sie das uneigentliche Integral $\int\limits_0^\infty x\cdot e^{-x^2}dx$.

Aufgabe 3: Fourier-Reihen

Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei auf dem Intervall $[0, 2\pi]$ definiert als $f(x) = x(2\pi - x)$ und 2π -periodisch auf ganz \mathbb{R} fortgesetzt (Skizze!). Berechnen Sie die Fourier-Reihe von f.

Aufgabe 4: Fourier-Transformationen

Berechnen Sie die Fourier Transformierte der Funktion

$$x(t) = \begin{cases} e^{-\frac{t}{2}}, & \text{für } t \ge 0\\ e^{\frac{t}{2}}, & \text{für } t \le 0 \end{cases}$$

Aufgabe 5: Lineare Algebra

Eine Ebene E geht durch den Punkt P(6,8,2) und hat $\vec{n} = \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$ als einen Normalenvektor.

Bestimmen Sie für E eine Ebenengleichung in Parameterform, Koordinatenform, Normalenform und Hesse'scher Normalenform. Welchen Abstand d hat der Punkt Q(6,3,6) von der Ebene E?

Aufgabe 6: Differentialrechnung

Berechnen Sie den Schnittpunkt der Tangentialebenen an den Graphen der Funktion

$$f(x,y) = \frac{8x^2 + y^2 - 4}{4}$$

in den Punkten $P_1\left(1,1,0\right)$ und $P_2\left(0,\frac{1}{2},-\frac{1}{2}\right)$ mit der x-z-Ebene.

Aufgabe 7: Differentialrechnung

Berechnen Sie alle relativen Extrema der Funktion

$$f(x,y) = (x^2 + y^2) \cdot e^{-x}$$

und geben Sie jeweils an, um welche Art von Extremum es sich handelt.

Aufgabe 8: Integralrechnung

Berechnen Sie das folgende Integral

$$\iint_{\mathbb{R}} (2xy - x^2 - y^2) dxdy$$

Dabei sei D jener Bereich, der von den Kurven y = 1 - x, y = 0 und x = 3 eingeschlossen wird.

Aufgabe 9: Integralrechnung

Welches Volumen hat ein Körper, der durch Rotation der Kurve $f(x) = 1 + \sin(x)$ im Bereich $0 \le x \le 2\pi$ entsteht. Bestimmen Sie außerdem die Masse des Körpers, wenn die Dichte seines Materials $\rho = \frac{1}{\pi^3}$ beträgt.

(Hinweis: Transformation auf Zylinderkoordinaten)

Aufgabe 10: Differentialgleichungen 1. Ordnung

Lösen Sie das Anfangswertproblem

$$y'+2y=e^{2x}+x$$
, $y(0)=2$

Aufgabe 11: Differentialgleichungen 2. Ordnung

Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y'' - y' - 6y = 12\cos(3x)$$
.

Aufgabe 12: Matrizen und lineare Abbildungen

a) Prüfen Sie, ob die folgende Matrix A invertierbar ist und berechnen Sie gegebenenfalls die Inverse A^{-1} .

$$A := \begin{pmatrix} 1 & 4 & 2 \\ 0 & 2 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$

b) Die Matrix A bilde mit dem Vektor $\vec{y} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$ das LGS $A \cdot \vec{x} = \vec{y}$. Prüfen Sie dieses auf Lösbarkeit und bestimmen Sie ggf. die Lösung.