Hochschule für Angewandte Wissenschaften Hamburg

Fachbereich Medientechnik

Labor für Nachrichtentechnik

# Laborversuch 1

# "Spektren und Übertragung"

| Labortag                | 19.10.2005                       |
|-------------------------|----------------------------------|
| Protokollführer         | Malte Spiegelbery                |
| Weitere Laborteilnehmer | Mail Schröder<br>Dennis Wedemann |
| Testtat O.K.            | eg.10.2009                       |

# 1. Kennenlernen der Übungsplatine

Nachdem wir eine Einleitung der Übungsplatine bekommen haben, lernten wir dir gesamte Schaltung kennen.

## 2. Durchführung

# Aufgabe 1

Sinus, Dreieck und Rechteck mit 1V Amplitude und der Frequenz 1KHz, sind auf dem Oszilloscope darzustellen:

Die Zeichnungen finden sich im Anhang.

#### Aufgabe 2

Die Spektren des Sinus, Dreiecks und Rechtecks sind aufzunehmen, sowie deren normierte Absolutwerte mit den Filterkoeffizienten der jeweiligen Reihe zu vergleichen:

Die Zeichnungen finden sich im Anhang.

Im Spektrum des Sinus zeigte sich, dass der Sinus zu 100% aus der Grundschwingung besteht. Dies war nicht anders zu erwarten.

Bei den anderen beiden Signalen sollen nun zusätzlich die Amplituden und Frequenzen der Harmonischen ermittelt werden.

Nach Fourier setzt sich eine periodische Rechteckschwingung folgendermaßen zusammen:

$$U(t) = \sin(\omega \circ t) + \frac{1}{3}\sin(3 \cdot \omega \circ t) + \frac{1}{5}\sin(5 \cdot \omega \circ t) + \frac{1}{7}\sin(7 \cdot \omega \circ t) + \frac{1}{9}\sin(9 \cdot \omega \circ t) + \dots$$

Benötigte Formeln:

$$a_n = 20 \log \frac{U_n}{U_0}$$
 umgestellt nach  $U_n = 10^{(a/20)d8} \cdot U_0$ 

| Rechteck        | Frequenz | Pegel in dB    | U absolut   | Fourier-Koeff |
|-----------------|----------|----------------|-------------|---------------|
| Grundschwingung | 14 1/2   | 4.35/2.14      | 1,28 /26/14 |               |
| 2.Harmonische   | 4 kHz    | -5,12/-7,33    | 0,43/043    | 1/3           |
| 3.Harmonische   | 5 kHz    | -9,48 +17,2    | 0,16 \$     | 1/5           |
| 4.Harmonische   | 74h      | -17, 711-14,42 | 0,45        | 1/7           |
| 5.Harmonische   | 9442     | -14,21)-17,08  | 0,44        | 1/9           |

Nach Fourier setzt sich eine periodische Dreieckschwingung folgendermaßen zusammen:

$$U(t) = \sin(\omega \circ t) + \frac{1}{9}\sin(3 \cdot \omega \circ t) + \frac{1}{25}\sin(5 \cdot \omega \circ t) + \frac{1}{49}\sin(7 \cdot \omega \circ t) + \frac{1}{81}\sin(9 \cdot \omega \circ t) + \dots$$

| Dreieck         | Frequenz | Pegel in dB    | U absolut | Fourier-Koeff |
|-----------------|----------|----------------|-----------|---------------|
| Grundschwingung | 14#2     | 0,034/-2,18    | 0,771     |               |
| 2.Harmonische   | 3 KHZ    | -18896/2411    | 0,882     | 1/9           |
| 3.Harmonische   | SkHZ     | -26, 661-28,87 | 0,036     | 1/25          |
| 4.Harmonische   | 7 KHz    | -31, 771-31,51 | 1,01      | 1/49          |
| 5.Harmonische   | 9KH6     | -36,2/-34,42   | 0,011     | 1/81          |

#### Aufgabe 3

Ermittlung der Grenzfrequenz eines Tiefpasses erster und dann zweiter Ordnung.

Das Tiefpassfilter auf der Übungsplatine hat folgende Werte:

$$R1 = 1.6 \text{ K}\Omega$$
  $C1 = 100 \text{nF}$ 

Damit ergibt sich folgende Grenzfrequenz:

$$fg = \frac{1}{2\pi \cdot R \cdot C}$$

$$fg = \frac{1}{2\pi \cdot 1,6K\Omega \cdot 100nF} = 994.3 \text{ Hz}$$

Ein Tiefpass ist eine Schaltung, die tiefe Frequenzen unverändert überträgt und bei hohen Frequenzen eine Abschwächung und Phasenverschiebung bewirkt.

Eine tiefe Frequenz ist 0,01 x fg. Mit dieser Frequenz wird an Messpunkt MP2 ein Pegel von 1000mV eingestellt und dann die Frequenz so lange erhöht, bis eine Spannung von 707mV anliegt. Dies entspricht eine Dämpfung von -3dB.

Werden 2 entkoppelte Tiefpässe hintereinander geschaltet, so hat jedes Filter bei fg −3dB, sodass in Summe sich eine Dämpfung von −6dB ergibt.

Weil auch beim Filter 2. Ordnung auch die fg bei -3dB definiert ist, ist diese fg nun bei der Frequenz, bei der jedes einzelne Filter -1,5dB hat.

$$fg2 = fg1\sqrt{\sqrt{2} - 1} =$$

# Aufgabe 5

Für Lautsprecherweichen genügen Filter 1. und 2.Ordnung. Um aber im Radio die einzelnen Sender zu selektieren, benötigt man für eine höhere Trennschärfe Filter höherer Ordnung. Auf der Übungsplatine ist als Beispiel für ein selektives Filter, ein aktives 1 KHz Filter aufgebaut.

### Messwertabelle:

### 1 KHz Filter

| dB   | U2     | fgu     | fgo         |
|------|--------|---------|-------------|
| 0    | 1000mV | 1442    | = fres 1KHz |
| -1,5 | 840mV  | 977 Az  | 1,24 KH     |
| -3   | 707mV  | 947 112 | 1,28 kHz    |
| -6   | 500mV  | 880 Hz  | 1,38 WHZ    |
| -10  | 316mV  | 770 Hz  | 1,58 WH     |
| -20  | 100mV  | 410 Hz  | 3,01 kHz    |

Der Amplitudenfrequenzgang befindet sich im Anhang.

# Vergleich beider Filtertypen:

|                 | Filter 2.Ordnung |         | 1 KHz Filter |       |
|-----------------|------------------|---------|--------------|-------|
| Resonazfrequenz | fr=              | AUH2    | fr=          | AUHL  |
| Bandbreite      | .b=              | 1967 Hz | . b =        | 233Hz |

#### Messwerttabellen

Filter 1.Ordnung

| dB   | U2     | Frequenz  |
|------|--------|-----------|
| 0    | 1000mV | 10 Hz     |
| -1,5 | 840mV  | 630 Hz    |
| -3   | 707mV  | 966 Hz    |
| -6   | 500mV  | 1,657 ktz |
| -10  | 316mV  | 2,9 kts   |
| -20  | 100mV  | 9,5 4.12  |

Filter 2.Ordnung

| dB   | U2     | Frequenz |
|------|--------|----------|
| 0    | 1000mV | 10 Hz    |
| -1,5 | 840mV  | 442112   |
| -3   | 707mV  | 642 Hz   |
| -6   | 500mV  | 550 Az   |
| -10  | 316mV  | 1.\$5kHz |
| -20  | 100mV  | 2,90 kts |

Der Amplitudenfrequenzgang befindet sich im Anhang.

# Aufgabe 4

Ein Hochpass ist eine Schaltung, die hohe Frequenzen unverändert überträgt und bei tiefen Frequenzen eine Abschwächung und Phasenverschiebung bewirkt.

Eine hohe Frequenz ist 100 x fg. Mit dieser Frequenz wird an Messpunkt MP2 ein Pegel von 1000mV eingestellt und dann die Frequenz so lange erniedrigt, bis eine Spannung von 707mV anliegt. Dies entspricht eine Dämpfung von -3dB.

Das Hochpassfilter auf der Übungsplatine hat folgende Werte:

$$R1 = 1.6 \text{ K}\Omega$$
  $C1 = 100 \text{nF}$ 

Damit ergibt sich folgende Grenzfrequenz:

$$fg = \frac{1}{2\pi \cdot 1.6K\Omega \cdot 100nF} = 9947 = 935 \text{ Hz}$$

Durch die Reihenschaltung eines Hoch- und Tiefpasses erhält man ein Bandpass. Seine Ausgangsspannung geht für hohe und tiefe Frequenzen gegen null. Der resultierende Frequenzgang ist gleich dem Produkt der Einzelfrequenzgänge.

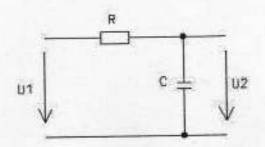
Die sogenannte Resonanzfrequenz ergibt sich bei dem Spannungsmaximum und es gibt eine untere und obere Grenzfrequenz. Die Differenz beider Grenzfrequenzen ist die Bandbreite des Filters.

Hochpass

| dB   | U2     | Frequenz |
|------|--------|----------|
| 0    | 1000mV | 10th     |
| -1,5 | 840mV  | 1413 Hz  |
| -3   | 707mV  | 572 No   |
| -6   | 500mV  | 507 Hz   |
| -10  | 316mV  | 254 Hz   |
| -20  | 100mV  | 89 HZ    |

Bandpass

| dB   | U2     | fgu     | fgo          |
|------|--------|---------|--------------|
| 0    | 1000mV | 1 dette | = f res 1142 |
| -1,5 | 840mV  | 545 Hz  | 1973 h       |
| -3   | 707mV  | 393Hz   | 2,36 WH      |
| -6   | 500mV  | 255 Hz  | 3, 68 MHz    |
| -10  | 316mV  | 15) Hz  | 5,98 kHz     |
| -20  | 100mV  | 48 Hz   | 19,4 kHz     |




# Fachhochschule Kiel

Fachbereich Elektrotechnik Institut für Nachrichtentechnik und Elektronik Laborhilfablatt

Berechnung der resultierenden Grenzfrequenz bei Reihenschaltung entkoppelter Tief-Hochpässe

Tiefpaß:



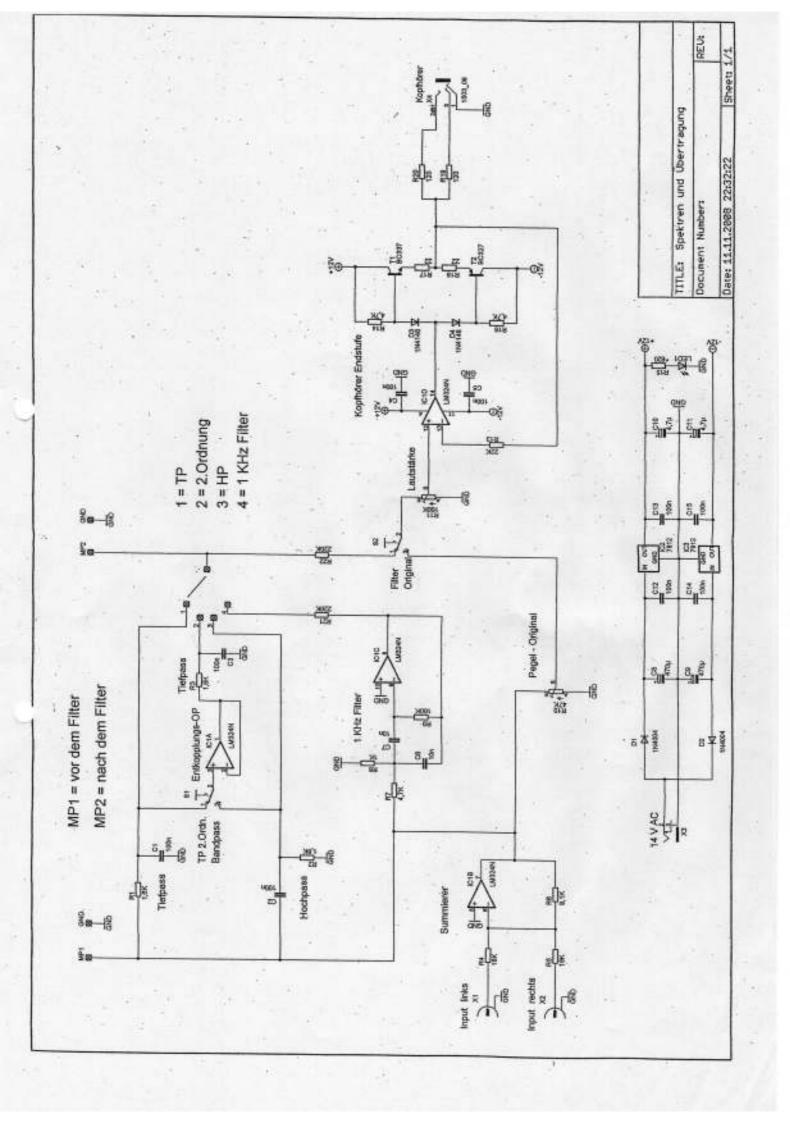
$$\frac{U2}{U1} = \frac{\frac{1}{j}\omega C}{R + \frac{1}{j}\omega C} = \frac{1}{1 + j\omega RC}$$

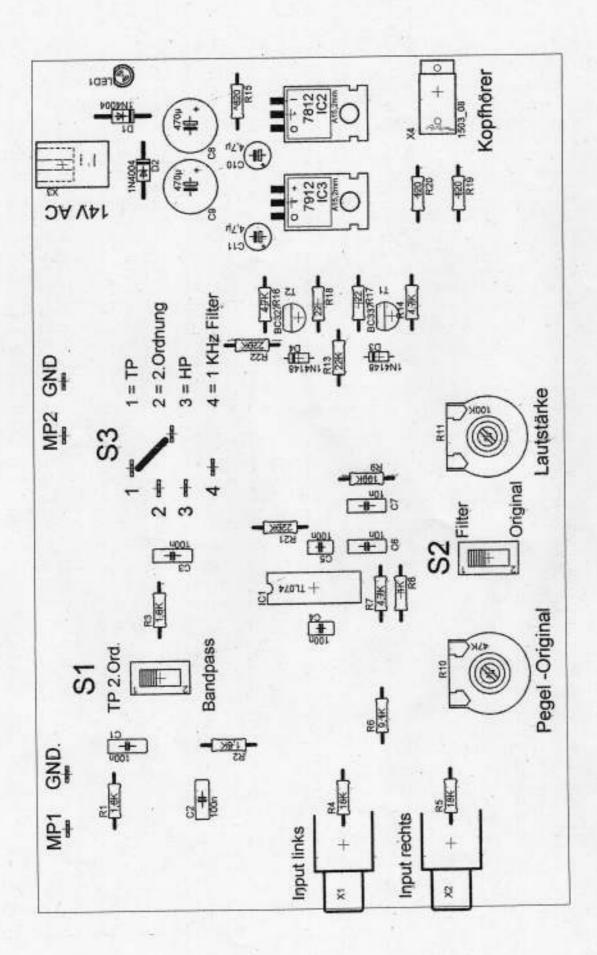
$$\left| \frac{U2}{U1} \right| = \frac{1}{\sqrt{1 + (\omega RC)^2}} = \frac{1}{\sqrt{1 + (f/fg)^2}} **$$

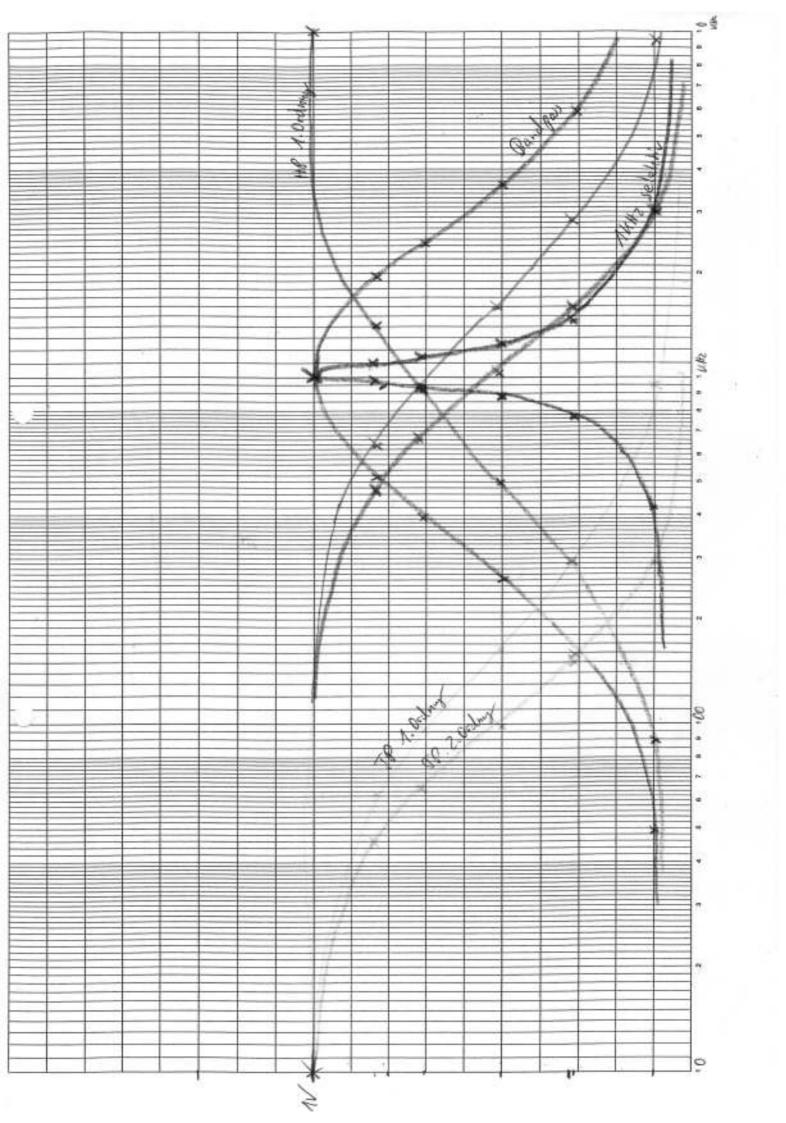
Bei Grenzfrequez gilt:

$$\left|\frac{U2}{U1}\right| = \frac{1}{\sqrt{2}}$$

Ansatz für 2 entkoppelte Tiefpässe:


$$\left| \frac{U2}{U1} \right| = \frac{1}{\sqrt{2}} = \left( \frac{1}{\sqrt{1 + (f/fg)^2}} \right)^2$$


$$\frac{1}{\sqrt{2}} = \frac{1}{1 + (f/fg)^2}$$


$$\sqrt{\sqrt{2}-1} = f/fg$$
;  $f = fg\sqrt{\sqrt{2}-1} = fgrenz$ 

Allgemein:  $fgrenz = fg\sqrt[n]{2}-1$  n für die Anzahl der in Reihe geschalteten Tiefpässe.

\*\* 
$$fg = \frac{1}{2\pi RC}$$
 ;  $\omega g = 1/RC$  ;  $RC = 1/\omega g$  ;  $\omega RC = \frac{\omega}{\omega g} = \frac{f}{fg}$ 





