Das OSI-Modell

- Vergleich mit Architekturmodell → es sind viele kleine Teilaufgaben nötig
- Bis auf kleine Abweichungen hat sich das OSI Modell bis heute durchgesetzt
- Protokoll: klare Verabredung, klar definierte Schritte → Implementierungen
- Aufgaben der Schichten sollen klar abgegrenzt sein → Übergänge zwischen den Schichten möglichst einfach

Die Schichten des OSI-Modells

7	Anwendungsschicht	Ressourcenmanagement, Treiber, Kernel, Agenten	
6	Darstellungsschicht	Kompressionsverfahren, Chiffrieren, Formate	
5	Kommunikationsschicht	Organisation über Zeit & Ressourcen, Verbindung	
		(Auf/Abbau)	
4	Transportschicht	Ende zu Ende-Sicherung, Quality of Service (QoS)	
3	Netzwerkschicht	Wege, Vermittlung (Telco), Routen (Productivity),	
		Verbindung	
2	Sicherungsschicht	Kanalcodierung, Flusssteuerung, ARQ-Protokoll	
1	Bitübertragungsschicht	Pegel, Impedanzen, Antennen, Kabel →	
		physikalische Übertragung	
		Modulation → Übersetzung der logischen Nullen	
		und Einsen in ein übertragbares Signal	

Ergänzungen:

- Bits werden in Rahmen organisiert → Sicherungsmechanismus → innere Logik in Rahmen als Erkennungsmerkmal → einzelne Bits sind ohne Bedeutung, daher Rahmennutzung
- Flusssteuerung: Verliert nicht an Bedeutung, weil individuelle Daten in Zukunft in Funknetzen zwischengespeichert werden sollen (s. LTE = Long Time Evolution, Nachfolger von UMTS)
- Netzwerke: Vermittlung, Routing → Wegevermittlungen (Qualitätsauswirkungen)
- Probleme auf Schicht 1 wirken sich auf anderen Schichten aus → Qualitätswunsch und die Bezahlung dafür → Quality of Service (QoS)
- Schichten 1-4 sind transportorientiert, 5-7 sind anwendungsorientiert
- Kommnunikationsschicht:
 - o Organisation über Zeit → Bsp. Quarantänedienst
 - Organisation über Ressourcen → Beispiele: Email Anhänge sollen nur bis zu einer gewissen Größe heruntergeladen werden, weil die Verbindung zum Internet langsam ist; Backup im Büro über Nacht; Rendern von Videos
 - Transport ist über andere Schichten geregelt → Regeln für den Transport werden festgelegt
 - → "Offener Schlagabtausch", alles wird geprüft und geregelt
 - Öbertragungsfortschritt kann erkannt werden → Downloads werden nicht neu gestartet
- Darstellungsschicht:
 - o Welches Format von Datei liegt vor?
 - Welche Daten liegen vor, wie werden diese dargestellt (Bsp. Programmverknüpfungen)

- Agent: Instanz, die verantwortlich für den Ablauf durch die Schichten ist
- Schicht 5-7 bezeichnet man auch als Middlewear (1-3 Hardware, nach 7 Software)
- Software wird durch Programmierbefehle geschrieben und setzt auf der Middlewear auf

Cluster

	Broadcast (>100 J.)		Productivity (50 J.)	Telco (120 J.)	eigene	
	/				Funktechnik	
7			FTP		ĞΡ\$\	
6	/DVB)	MHP) IP-	TV VOD, VOIP		/ \	
5	/	VP-	TY VOD, VOIP	GSM	GPS	
4		/	TCP	HSDPA, EDGE		
3			IP *	GSM, UMTS, LTE		
2	DVB	/Consumer	LAN (Ethernet,)	GSM, UMTS, LTE, DSL,		
	N /	/ Electronics		PDH, SDH	\ <i>/</i>	'
1	/D/NB/	Bluetooth	LAN	GSM, UMTS, LTE, DSL,	GPS/	
		/		PDH, SDH		

Broadcast:

- Fernsehen und Hörfunk
- Gutes Signal verteilen
- Echtzeit (es interessiert nicht, wer einschaltet → es wird nur sichergestellt, dass man empfangen kann)
- Von einem an alle
- Broadcast hatte bisher wenig bis fast nichts mit den anderen zu tun

Productivity:

- Bsp. Videoschnittplatz
- Netzwerke, in denen man produktiv werden möchte → Verknüpfung von Abläufen
- Alle mit allen
- Verlustfrei (Bsp. Kundendatensätze, welche übermittelt werden)
- Beliebige Hin- und Rückwege
- Kein Zeitproblem

<u>Telco:</u>

- Bsp. Analoges Telefon
- Echtzeit
- Tolerant gegenüber Fehlern (Bsp. Silbe wegstreichen, Satz bleibt trotzdem verständlich)
- → Es sind komplett unterschiedliche Systeme entstanden (jeder hat eigene Ansprüche → Topologie der Systeme)
- → Jeder Bereich hat eigene Entwicklung hinter sich → eigener Stil, ohne von anderen zu lernen
- → Bsp. Echos bei VOIP → Echos werden nicht behoben, weil es im anderen Bereich stattfindet
- → Die Systeme sind nicht für gemeinsame Nutzung ausgelegt

Erklärungen:

- HSDPA: Erfindung, um Datentransfer möglich zu machen → Erfindung im Telcobereich für Productivity
- DSL: Modulation über dem Voice-Band für digitale Übertragung (VOIP wurde auch so realisiert)
- VOIP:
 - o Inhouse: Eigene interne Netze in Unternehmen → Übertragung nur in einem Netz
 - o Alle Welt: Übertragung zwischen verschiedenen Netzen muss bedacht werden
- VOD: Verteilung von Programmen im gesamten Netzwerk → Sessions für einzelne User

Erkenntnisse:

- Productivity-Bereich hatte schon früh immer mit den Telconetzen zu tun → Modems
 - → Verlass auf die Netze des Telcobereichs
- Aufsetzen auf Weitverkehrsnetze (PDH, SDH, ATM, MPLS)
- Productivity hat nur eigene Netze im lokalen Bereich (nicht außer Haus!)
- Oft sind Schicht 1 und 2 gemeinsam in Technologien zu sehen → Physik ist eng mit der Sicherung der Daten verbunden

Informationstheorie

Kanalkapazität → ergibt sich aus SNR und Dynamik

$$C = B \cdot \log_2 \left(1 + \frac{P_S}{P_N} \right) \approx \frac{B \cdot SNR}{3} \left[bps \right]$$

Information → Zeit kommt als dritte Größe hinzu

$$I = B \cdot D \cdot T = B \cdot \left(1 + \frac{P_S}{P_N}\right) \cdot T \approx \frac{B \cdot SNR \cdot T}{3}$$

Feststellung des SNR:

- Abstufungen in der Signalleistung (2er-Aufteilung)
- Wird die Unterteilung so klein wie die Rauschleistung, ist keine weitere Unterteilung möglich → 2-er Logarithmus → Umformung zu dB Werten

Beispiele:

- 1. Kabel
- Feststellung der maximal übertragbaren Frequenz (→ Ermittlung der Bandbreite)
- Pegelabstand bis maximalem Pegel bei f_{\max} ightarrow Dynamik / SNR
- Fläche aus Bandbreite und Dynamik → Kanalkapazität

- 2. GSM Kanal
- Bandbreite 180 kHz, D > 18 dB $\rightarrow c = 1, 2 Mbps$
- Vocodertechnik \rightarrow 13 kpbs für 8 Teilnehmer \rightarrow C = 104 kbps
- 3. FM/UKW Audio
- Signal mit gewisser Bandbreite und gewissem SNR → man kann das Radioprogramm gut und störungsfrei empfangen
- Trick der FM → weniger SNR, dafür größere Bandbreite → Informationsmenge bleibt gleich!
- Audio für UKW: B = 15 kHz, SNR = 50 dB, C = 250 kbps
- Verfügbarer FM-Kanal: B = 180 kHz, SNR = 25 dB, C = 1,5 Mbps
 - → 6 Kanäle wären möglich

Analyse von Systemem bzgl. der Kanalkapazität

- Quelle ansehen und auswerten
- Modulator ansehen und auswerten

Signalrauschen $P_{\scriptscriptstyle N}$:

$$P_{N} = k \cdot T \cdot B = N_{0} \cdot B$$

$$k = 1,38 \cdot 10^{-23} [Ws \cdot K^{-1}], T[K], B[Hz]$$

→ Rauschen wächst mit Temperatur und Bandbreite

$$C = B \cdot \log_2 \left(1 + \frac{P_S}{P_N} \right) = B \cdot \log_2 \left(1 + \frac{P_S}{N_0 \cdot B} \right)$$

- → Bandbreite hoch → Rauschleitung hoch → Signalleistung muss erhöht werden
- Was ist die maximal mögliche Kanalkapazität? Erreicht man diese, indem man die Bandbreite gegen unendlich laufen lässt?

mit

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \qquad \text{für } 0 \le x \le 1$$

ergibt sich

$$\ln(1+x) \approx x$$
 (für kleine x)

$$\log_2(1+x) = \frac{\ln(1+x)}{\ln(2)} \approx \frac{x}{\ln(2)}$$

$$C_{\text{max}} = B \cdot \frac{P_S}{N_0 \cdot B \cdot \ln(2)} = \frac{P_S}{N_0 \cdot \ln(2)}$$

→ Kanalkapazität kann durch Sendeleistung gesteigert werden, das Erhöhen der Bandbreite erhöht auch die Rauschleistung

- Der Quotient $\frac{P_{\rm S}}{C_{\rm max}}$ lässt sich umschreiben als:

$$\frac{P_{S}}{C_{\max}} \triangleq \frac{Leistung}{bit/s} \triangleq \frac{Energie}{bit} = E_{bit}$$

$$P_{S} = C \cdot E_{bit}$$

$$P_{N} = B \cdot N_{0}$$

$$P_{S} = C \cdot E_{bit}$$

$$P_{N} = C \cdot E_{bit}$$