DVB-Antennenübertragungsstandard (DVB-T)

- Welten zwischen DVB & GSM → Broadcast ist in den Funkentwicklungen weiter voran → DVB-T ist ein Beispiel für diese Aussage
- Stationärer Empfang mit portablem Empfänger (zuvor war auch die Empfangsantenne stationär, meist auf dem Dach angebracht) → 45 dB mehr an Reserve nötig → Wo wird diese benötigt?

Signalverlust bei portablem Empfang

analoges terrestrisches Fernsehen (→ Dachantenne)	Δ in dB	digitales Überallfernsehen (→ Stabantenne am Empfangsgerät)
direkte Sicht → Rayleigh- Kanal	7-8	keine direkte Sicht, nur Echos → Rice-Kanal
Yagi-Antenne	12-15	Stabantenne (i.d.R. λ / 4 - Stab)
Antenne auf dem Dach	14	Antenne im Gebäude
Dachantenne	6	Antenne im Erdgeschoss
3 m Antennenhöhe	5	1 m Antennenhöhe
	ca. 45 dB	

- Grundsatz für digitale Systeme → es wird ein kleinerer SNR benötigt, um in guter Qualität zu übertragen, allerdings mehr Bandbreite
- Bsp. analoges Fernsehen mit SNR ca. 50 dB → digital bekommt man es auch mit 20 dB schon gut hin
- Stationärer Empfang → Nutzer stellt an der Antenne ein → evtl. Einfangen von bestimmten Signalen (→ kein mobiler Empfang möglich)

DVB terrestrisch → COFDM (coded orthogonal frequency division multiplex)

- Lösung für zukünftige Plattformen (z.B. LTE)
- Problem im Funkkanal: ISI (Intersymbol-Interferenz)
- Laufzeitunterschiede zwischen Direktsignal und Echos:

Δs	Δt
15 km	50 μs
30 km	100 μs
75 km	250 μs

- Bei 1 Mbaud (1 Mio. Schritte) \rightarrow Symboldauer bei 1 μ s \rightarrow bis zu 50-250 Symbole durch Echo überlagert \rightarrow bei 3 Mbaud entsprechend mehr
- Lösung:
 - Bei GSM wird der Empfänger alle 4 ms neu eingelernt → verschiedene
 Entzerrungsstrategien (limitierte Performance)
 - Bei DAB, DVB & LTE wird die Symboldauer verlängert, z.B. auf 1 ms (→ stationär) →
 daraus resultiert eine Schrittgeschwindigkeit von 1 kbaud → es lassen sich allerdings
 keine Datenraten von 40 Mbps realisieren
 - Es wird pro Schritt ein Träger definiert, auf dem jeweils mit einer Symboldauer von
 1 ms übertragen wird → orthogonale Anordnung der Träger → OFDM

o Orthogonalität lässt sich auch über Fourierreihe zeigen:

$$f(t) = \sum_{k=1}^{\infty} a_k \cdot \cos(\omega_k t) + b_k \cdot \sin(\omega_k t)$$

→ Orthogonale Stellung im Zeigerdiagramm von Sinus und Cosius

Technische Umsetzung

Nicht 8000 LO (Local Oscillators) und 8000 Modulatoren, sondern das notwendige Zeitsignal aus dem Spektrum rechnen \rightarrow IDFT

Es werden N Träger moduliert:

$$\begin{split} s_{DVB}\left(t\right) &= \sum_{l=1}^{N} \underbrace{s_{l}}_{Daten,\,z.B.\,QPSK} \cdot \underbrace{e^{j2\pi ft \cdot l}}_{Tr\"{a}ger} \\ &= \sum_{l=1}^{N} s_{l} \cdot e^{\frac{j2\pi t \cdot l}{T}} \qquad \left(t = k \cdot \Delta t, T = N \cdot \Delta t\right) \\ s_{DVB,\,diskret} &= \sum_{l=1}^{N} s_{l} \cdot e^{\frac{j2\pi \frac{k \cdot l}{N}}{N}} \triangleq IDFT \end{split}$$

→ Es werden die gewünschten Signalträger genannt, das Datensignal hinzugefügt und jenes wird per IDFT zurückgerechnet.

Die Datenraten streuen, weil man auf jedem Kanal verschiedene Modulationen und Faltungscoder-Punktierungen verwenden kann.

GSM – Global System for Mobile Communication

Einführung in das GSM-System

- PLMN Public Land Mobile Network → bezeichnet ein kontinentales Mobilfunknetz im Allgemeinen
- Man spricht noch längst nicht von internationalen Standards
- Störungen des GSM-Kanals:
 - o Ausbreitungsverluste
 - o Fading (frequenzabhängiger Schwund)
 - o Mehrwegeausbreitung
 - fehlende Sichtbarkeit (Rice- statt Rayleighkanal)
- Grundsatz: Kanäle sind frequenzmäßig unterteilt → Frequenzmultiplex, zusätzlich sind diese auch zeitlich gemultiplext → Kombination für die Vermittlungstechnik → es wird ein Zeitintervall und eine Frequenz zugewiesen
- Frequenzvergabemuster → Frequenzen können in bestimmten Abständen wieder verwendet werden (→ wiederholte Frequenzplanung)
- Auch am Zellrand möchte man noch gut genug bedient werden → Störpegel sind nur dann möglich, wenn der SNR immer noch groß genug für eine fehlerfreie Übertragung bleibt
- Permanente Leistungseinstellung → so wenig wie möglich verwenden → an der Mobilstelle wird dadurch der Akku geschont

- Idealisierte Darstellung des zellularen Netzes wird in der Realität durch Verkehrstopologie angepasst
- Sektionen innerhalb von Zellen bieten die Möglichkeit, gleiche Frequenzen auch in benachbarten Zellen zu nutzen (diese müssen allerdings gerichtet abgestrahlt werden, um eine Überlagerung an der Mobilstelle zu vermeiden)
- Anpassung von Leistung/Synchronisation im halbem Mikrosekundenbereich
- Das Beste technische Verständnis im Netz haben die Betreiber → diese müssten sich allerdings wesentlich mehr untereinander absprechen, damit die technischen Gegebenheiten zu einander passen

Berechnung:

Wie viele Gespräche können in einer Zelle gleichzeitig vermittelt werden (Clustergröße k = 7)?

$$\frac{124 \text{ Kan\"ale} \cdot 8 \text{ Zeitbereiche}}{7 \text{ Zellen pro Cluster}} = 141,7 \approx 140$$

→ Bei mehr benötigten gleichzeitigen Verbindungen kann man entweder mehr Zellen einfügen oder Sektoren nutzen (Bsp. Stadionkurven im Fußballstadion, Verlauf einer S-Bahn Linie → sind festgelegt und ändern sich nicht)

Rahmensynchronisierung

- Es wird Zeitmultiplexing genutzt → von einer Quelle aus werden 8 Abschnitte formuliert → Rückweg muss so beschaffen sein, dass die Pakete auch in der richtigen Reihenfolge ankommen und entsprechend vermittelt werden können
- Gerät in größerer Entfernung hat mit größerer Laufzeit zu rechnen
 - → Die Verzögerung zu den Geräten wird gemessen und die Sendezeit des Pakets an der Mobilstelle angepasst → es ergibt sich ein permanentes Screening und entsprechende Anpassungen

Aufbau des GSM-Netzes

- Bestimmte Situationen können vorhergesagt werden → z.B. Verlauf einer S-Bahnstrecke, wenn man im Zug sitzt → Zellen werden entsprechend angesprochen
- Übertragung von Gesprächen über das Festnetz zur nächstgelegenen Funkstelle beim Empfänger → Betreiber brauchen mindestens ein MSC, welches die Gespräche entsprechend weiterleitet
- Datenbanken des GSM-Netzes:
 - o HLR: Hauptdatenbank mit Nutzerdatenbank
 - o EIR: Equipmentregister mit Infos über die sich im Netz befindlichen MS
 - o AUC: Authentifizierungsregister
 - ∨LR: Verlaufsregister, schneidet den Benutzerverlauf über verschiedene Zelle mit → pro MSC gibt es ein VLR

Adressen und Kennziffern

- Mobilität = Trennung von Benutzer, Betreibern, Diensten und Hardware → Einführung von Kennungen
- Zusätzlich Trennung von einzelnen Diensten bei GSM

Nutzer:	Dienste:
SIM (Karte mit	MSISDN (allgemeine ISDN Rufnummer
Authentifizierungsinformationen des	eines Geräts ->)
Nutzers)	
TMSI (eindeutige, vertrauliche ID des	
Nutzers)	
IMSI (über das HLR wird jeder Benutzer	
mit einer Kennung versehen)	
Gerät:	Betreiber:
IMEI (wie MAC-Adresse, eindeutige	MSRN (Rufnummer des Geräts, welche
Bezeichnung des Geräts)	in der gerade aktuellen Zelle
	zugewiesen ist → temporär, von VLR
	vergeben)
	LAI, BSIC, CI