Vermittlungstechnik

- Qualität wird festgemacht an: Physik der Übertragung, Kanalcodierung, Vermittlungstechnik
- 3 Prinzipien: Leitungsvermittlung, Paketvermittlung & Zellvermittlung

Parameter	Paketvermittlung	Zellvermittlung	Leitungsvermittlung
Beispiel f. Technik	IP	ATM	SDH, PDH
Traffic	Data	Voice + Data	Voice
Betreiberschaft	viele Betreiber	singulär (d.h. Zuständigkeiten für bestimmte Bereiche des Netzes)	singulär
Vermittlungsprinzip	Routingtabelle (Software) → "Wegsuche"	Sortiernetze (Hardware)	feste Wege (Hardware)
Vermittlungstyp	verbindungslos	verbindungsorientiert	verbindungsorientiert (auch der der Zeitschlitzvariante)
Warteschlangen	ja	gering	nein
QoS-Parameter			
Delay	ja, ms 100 ms- Bereich	sehr gering (μs - ms)	nein (nur Signalleufzeiten)
Jitter	hoch	gering	→ 0
Sequenz (Reihenfolge)	nicht gesichert	gesichert	gesichert
Verluste	Promille bis Prozentbereich	sehr gering (statistisch kontrollierbar)	keine
Zuverlässigkeit der Verbindung	nicht gesichert	hoch	sehr hoch

Stichworte zu den Vermittlungstechniken

- Leitungsvermittlung:
 - o Exklusive Nutzung
 - o Reservierung
 - o Weg unbekannt → Adresse nicht nötig → keine Wegsuche nötig
 - o "Dauer der Reise" ist dem Paket unbekannt
 - o Weg wird vorab organisiert
 - o Feste Wege
 - o Gleiche Einheiten
 - o Ersatzleitung wird für Fehlerfall bereit gehalten
- Paketvermittlung:
 - o Wegefindung, während man unterwegs ist
 - o Zieladresse muss mitgeführt werden
 - o Wege sind dynamisch anpassbar
 - O Ausfall führt zu neuem Einlernen → neue Organisation → die meisten Pakete kommen mit Verzögerung an
- Zellvermittlung:
 - o Label (Kennung) → Wegefindungsinformation
 - Vorab-Festlegung des Weges (Kenntnis des Netzes → statisches Routing)

- Bildlicher Vergleich: Ein Auto fährt vor einem Radfahrerfeld und sagt Streckenposten, wie die Radfahrer geleitet werden sollen, dabei kann durch verschiedene Merkmale (z.B. Trikotfarbe) eine Unterscheidung zwischen den Wegen getroffen werden
- Keine exklusive Nutzung
- System ist so organisiert, dass sich Pakete nicht blockieren k\u00f6nnen → jenes wurde vorher berechnet
- o Nötige Kapazität wird im Voraus berechnet

Organisation der Leitungsvermittlung

- IP über SDH → Anschlüsse für Voice & Data sind am SDH vorhanden → Am Ende der SDH-Verbindung stellt sich die Frage nach der sich anschließenden Vermittlungstechnik (evtl. muss man umsortieren für Paketvermittlung)
- 30 Gespräche multiplexen auf einen 30-er Zeitrahmen (PCM30 für ISDN, 30 Sprachkanäle + 1 Signalisierungskanal + 1 Rahmen) → TDM (= time division multiplex) bei PCM30 → ca. 2 Mbit/s → die 30 Kanäle werden nebeneinander übertragen
- → Man kann "durchfahren", es schließen sich allerdings andere hinter einem an (Stoßstange an Stoßstange)
- → Wenn man auf Weitverkehrsnetz geführt wird, findet man genau die Lücke (Geschwindigkeit ist festgelegt, Lücke ist freigehalten)
- Zellvermittlung: Hat man "grünes Licht", dann ist die Qualität und die Laufzeit fast gesichert
- VOIP → Delay sind an der Tagesordnung → z.B. Skype in entfernte Länder
- Bestimmte Merkmale (Delay, Jitter, Sequenz) werden für bestimmte Anwendungen festgelegt und können auch entsprechend mit dem Kanalbetreiber vereinbart werden

Statistisches Multiplexing

Eine Telefonverbindung in ISDN mit $R=64\ kbit\ /\ s$ lässt sich als $X_{on}\ /\ X_{off}$ -Quelle beschreiben. Es liegt eine diskret verteilte Quelle vor.

diskrete Zustände	Wahrscheinlichkeit	
$0 \cdot R$	$1-\alpha$	
1 · R	α	

mit α = anteilige Gesprächsdauer, z.B. 40 %

Erwartungswert:

$$E(x) = \alpha \cdot R = 64 \text{ kbit } / \text{ s} \cdot 0, 4 = 25, 6 \text{ kbit } / \text{ s}$$

- Im statistischen Ansatz kann im Mittel mit $\mathit{E}(\mathit{x})$ gerechnet werden

Varianz:

$$\sigma_x^2 = E(x^2) - (E(x))^2$$

Oder für diskrete Quellen

$$\sigma_x^2 = \sum p(x=i) \cdot (i-E(x))^2$$

Wobei
$$p(x=0) \triangleq X_{off} = 0,6$$
 (Wahrscheinlichkeit für das Eintreffen von X_{off}) $p(x=0) \triangleq X_{on} = 0,4$

Beispiel:

$$\sigma_{x}^{2} = (1-\alpha)\cdot(0-\alpha\cdot R)^{2} + \alpha\cdot(R-\alpha\cdot R)^{2}$$

$$= \alpha^{2}R^{2} - \alpha^{3}R^{2} + \alpha(R^{2} - 2\alpha R^{2} + \alpha^{2}R^{2})$$

$$= \alpha^{2}R^{2} - \alpha^{3}R^{2} + \alpha R^{2} - 2\alpha^{2}R^{2} + \alpha^{3}R^{2}$$

$$= R^{2}\alpha(1-\alpha)$$

Standardabweichung für das Beispiel:

$$\sigma_x = R \cdot \sqrt{\alpha \cdot (1 - \alpha)}$$

$$= 64 \text{ kbit } / s \cdot \sqrt{\frac{24}{100}} = 31,25 \text{ kbit } / s$$

Wie wachsen E(x) und σ_x mit weiteren Gesprächen?

- z.B. bei N = 2 Gesprächen
- binomiale Verteilung in der Gewichtung der diskreten Zustände

$$E(x) = 2 \cdot \alpha \cdot R$$
 (\Rightarrow lineares Wachstum) $\sigma_x = R \cdot \sqrt{2\alpha \cdot (1-\alpha)}$ (\Rightarrow Wachstum mit \sqrt{n})