Pegelrechnung Weiterführung

$$J \sim P \sim \tilde{p}^2$$

$$\Delta L_J = 10 \cdot \lg \left(\frac{J_2}{J_1}\right) \text{ in } dB$$

$$\Delta L_{\tilde{p}} = 20 \cdot \lg \left(\frac{\tilde{p}_2}{\tilde{p}_1}\right) \text{ in } dB$$

Schallintensität (für kugelförmige Schallabstrahlung):

$$J = \frac{P_{ak} \cdot \gamma}{S_{Kugel}} = \frac{1}{T} \cdot \int_{0}^{T} p(t) \cdot v(t) dt$$

S = Oberfläche einer Kugelförmigen Schallquelle

P = Schallleistung

γ = Richtwirkung einer gerichtet abstrahlenden Schallquelle (je größer, desto stärker gerichtet)

p(t) = Schalldruck

v(t) = Schallschnelle

Für sinusförmige Schwinung:

$$J = \frac{1}{2} \cdot \hat{p} \cdot \hat{v} \cdot \cos(\varphi)$$
$$\varphi = \sphericalangle(p, \underline{v})$$

Ersetzt man die Spitzenwerte durch Effektivwerte, ergibt sich:

Sinus:
$$\tilde{p} = \frac{\hat{p}}{\sqrt{2}} \Rightarrow \hat{p} = \tilde{p} \cdot \sqrt{2} \quad und \quad \hat{v} = \tilde{v} \cdot \sqrt{2}$$

$$\Rightarrow J = \tilde{p} \cdot \tilde{v} \cdot \cos(\varphi)$$

 $\cos(arphi)$ hat Auswirkungen auf die Lautstärke, muss daher genauer betrachtet werden.

 $\varphi \rightarrow 0$:

- a) ebene Welle
- b) Kugelwelle im Fernfeld ("Ferne" hängt von Wellenlänge ab)

Je weiter man sich von einer Schallquelle entfernt, desto leiser wird es:

$$J \sim \frac{1}{r^2}$$

Für die Annahme $\varphi \to 0$, also $\cos\left(\varphi\right) \to 1$ ergibt sich:

$$J = \tilde{p} \cdot \tilde{v} \to \tilde{p} = Z_0 \cdot \tilde{v} \ \left(\to s.auch \ \underline{u} = \underline{z} \cdot \underline{i} \right)$$

Herleitung des Referenzwertes für die Schallintensität $J_{\scriptscriptstyle 0}\,$ mit Hilfe von $\,\tilde{p}_{\scriptscriptstyle 0}\,$

$$J = \tilde{p} \cdot \tilde{v}$$
 $\tilde{p} = Z_0 \cdot \tilde{v} \iff \tilde{v} = \frac{\tilde{p}}{Z_0}$ $\Rightarrow J = \frac{\tilde{p}^2}{Z_0}$

$$Z_{0} = \rho_{Luft} \cdot c_{Luft} = 416 \frac{kg}{m^{2}s} (entnommen \ aus \ Formelsammlung)$$

$$\tilde{p}_{0} = 2 \cdot 10^{-5} \frac{N}{m^{2}}$$

$$J = \frac{\tilde{p}^{2}}{Z_{0}} \rightarrow J_{0} = \frac{\tilde{p}_{0}^{2}}{Z_{0}}$$

$$J_{0} = \frac{\left(2 \cdot 10^{-5} \frac{N}{m^{2}}\right)}{416 \frac{kg}{m^{2}s}} = 9, 6 \cdot 10^{-13} \frac{W}{m^{2}} \approx 10^{-12} \frac{W}{m^{2}}$$

Druck/Intensitätsverhältnisse und ihre Pegelunterschiede

$rac{ ilde{p}_2}{ ilde{p}_1}$	$\Delta L_{ ilde{p}}$ (in dB)	$\frac{J_2}{J_1}$	$\Delta L_{_{\! J}}$ (in dB)
$ ilde{p}_1$		J_1	
1	0	1	0
2	6	2	3
3	10	3	5
4	6+6=12	4	6
5	20-6=14	5	7
6	10+6=16	6	8
7	ca. 17	7	8,5
8	12+6=18	8	9
9	ca. 19	9	9,5
10	20	10	10
100	40	100	20

Zur Rechnung:

- links multiplizieren ist rechts addieren
- links dividieren ist rechts subtrahieren
- links potenzieren heißt rechts verdoppeln
- links radizieren (Wurzel ziehen) heißt rechts halbieren

PA:

a) gegeben:
$$P_{ak}=1W, r=10\,m, \gamma=1$$
 gesucht: $L_{\!\scriptscriptstyle J}\,, L_{\!\scriptscriptstyle \tilde{p}}$

b) gegeben:
$$P_{ak}=2W, r=10\,m, \gamma=1$$
 gesucht: $\Delta L_{_{\! J}}, \Delta L_{_{\! \tilde P}}$

Lösung:

$$J = \frac{1W \cdot 1}{4\pi \cdot 10^2 m^2} = 7,9 \cdot 10^{-4} \frac{W}{m^2}$$

$$L_J = 10 \cdot \lg\left(\frac{J}{J_0}\right) = 89dB$$

$$\tilde{p} = \sqrt{Z_0 \cdot J} = 0,57$$

$$L_{\tilde{p}} = 20 \cdot \lg\left(\frac{\tilde{p}}{\tilde{p}_0}\right) = 89dB$$

b)
$$J_2 = \frac{2W \cdot 1}{4\pi \cdot 100m^2} = 1, 6 \cdot 10^{-3} \frac{W}{m^2}$$

$$\frac{J_2}{J} \approx 2 (1,997...) \Rightarrow \Delta L_J = 3dB$$

$$\tilde{p}_2 = 0,81$$

$$\frac{\tilde{p}_2}{\tilde{p}} \approx \sqrt{2} \Rightarrow \Delta L_{\tilde{p}} = 3dB$$

Die errechneten 3dB sind ein statistischer Mittelwert. Es gibt auch Situationen, in denen man auf dem einen Ohr +6dB hört, auf dem anderen dann aber nur 0,5dB. Dies hängt mit der Phasenlage zwischen Schalldruck und Schallschnelle zusammen.

Beispielaufgabe zum Kopfrechnen:

gegeben:
$$\frac{\tilde{p}_2}{\tilde{p}_1} = \frac{30}{7}$$
 gesucht: $\Delta L_{\tilde{p}}$

$$\Delta L_{\tilde{p}} = 20 \cdot \lg\left(\frac{30}{7}\right) \approx 20 \cdot \lg\left(4\right) \approx 12dB$$

Berechnungsbeispiele im Vergleich

Schalldruck:

$$L_{\tilde{p}} = 134dB = 140dB - 6dB$$

 $100Pa = 200Pa : 2$

Schallintensität:

$$L_J = 134dB = 140dB - 6dB$$
$$25\frac{W}{m^2} = 100\frac{W}{m^2} : 4$$